Solveeit Logo

Question

Question: The value of the integral $\int_{0}^{1} \frac{x^3+x+1}{3x^2-3x+4} dx$ is...

The value of the integral 01x3+x+13x23x+4dx\int_{0}^{1} \frac{x^3+x+1}{3x^2-3x+4} dx is

Answer

1/2

Explanation

Solution

To evaluate the integral 01x3+x+13x23x+4dx\int_{0}^{1} \frac{x^3+x+1}{3x^2-3x+4} dx, we first perform polynomial long division because the degree of the numerator (3) is greater than the degree of the denominator (2).

Step 1: Polynomial Long Division

Divide x3+x+1x^3+x+1 by 3x23x+43x^2-3x+4:

So, we can write the integrand as: x3+x+13x23x+4=13x+13+23x133x23x+4\frac{x^3+x+1}{3x^2-3x+4} = \frac{1}{3}x + \frac{1}{3} + \frac{\frac{2}{3}x - \frac{1}{3}}{3x^2-3x+4} =13x+13+2x13(3x23x+4)= \frac{1}{3}x + \frac{1}{3} + \frac{2x-1}{3(3x^2-3x+4)}

Step 2: Split the Integral

Now, we can split the integral into two parts: I=01(13x+13)dx+012x13(3x23x+4)dxI = \int_{0}^{1} \left( \frac{1}{3}x + \frac{1}{3} \right) dx + \int_{0}^{1} \frac{2x-1}{3(3x^2-3x+4)} dx Let I1=01(13x+13)dxI_1 = \int_{0}^{1} \left( \frac{1}{3}x + \frac{1}{3} \right) dx and I2=012x13(3x23x+4)dxI_2 = \int_{0}^{1} \frac{2x-1}{3(3x^2-3x+4)} dx.

Step 3: Evaluate I1I_1

I1=[13x22+13x]01I_1 = \left[ \frac{1}{3} \frac{x^2}{2} + \frac{1}{3} x \right]_{0}^{1} I1=[x26+x3]01I_1 = \left[ \frac{x^2}{6} + \frac{x}{3} \right]_{0}^{1} I1=(126+13)(026+03)I_1 = \left( \frac{1^2}{6} + \frac{1}{3} \right) - \left( \frac{0^2}{6} + \frac{0}{3} \right) I1=16+260=36=12I_1 = \frac{1}{6} + \frac{2}{6} - 0 = \frac{3}{6} = \frac{1}{2}

Step 4: Evaluate I2I_2

I2=13012x13x23x+4dxI_2 = \frac{1}{3} \int_{0}^{1} \frac{2x-1}{3x^2-3x+4} dx Let u=3x23x+4u = 3x^2-3x+4. Then, du=(6x3)dx=3(2x1)dxdu = (6x-3) dx = 3(2x-1) dx. So, (2x1)dx=13du(2x-1) dx = \frac{1}{3} du.

Now, change the limits of integration for uu: When x=0x=0, u=3(0)23(0)+4=4u = 3(0)^2 - 3(0) + 4 = 4. When x=1x=1, u=3(1)23(1)+4=33+4=4u = 3(1)^2 - 3(1) + 4 = 3 - 3 + 4 = 4.

Substitute uu and dudu into the integral I2I_2: I2=134413duuI_2 = \frac{1}{3} \int_{4}^{4} \frac{\frac{1}{3} du}{u} I2=19441uduI_2 = \frac{1}{9} \int_{4}^{4} \frac{1}{u} du Since the upper and lower limits of integration are the same, the value of the definite integral is 0. I2=0I_2 = 0.

Step 5: Combine the Results

The total integral I=I1+I2I = I_1 + I_2. I=12+0=12I = \frac{1}{2} + 0 = \frac{1}{2}.

The final answer is 12\frac{1}{2}.

Explanation of the solution:

The integral is evaluated by first performing polynomial long division to simplify the integrand. This splits the integral into two parts: a simple polynomial and a rational function. The polynomial part is integrated directly. The rational function part is integrated using a substitution where the numerator is a multiple of the derivative of the denominator. A key observation is that the limits of integration for the substituted variable become identical, making the second part of the integral zero.

Answer:

The value of the integral is 12\frac{1}{2}.