Solveeit Logo

Question

Question: The value of the integral \(\int_{- 1/2}^{1/2}\sqrt{\left( \frac{x + 1}{x - 1} \right)^{2} + \left( ...

The value of the integral 1/21/2(x+1x1)2+(x1x+1)22\int_{- 1/2}^{1/2}\sqrt{\left( \frac{x + 1}{x - 1} \right)^{2} + \left( \frac{x - 1}{x + 1} \right)^{2} - 2}dx is -

A

2 log 43\frac{4}{3}

B

4 log 43\frac{4}{3}

C

log 43\frac{4}{3}

D

None of these

Answer

4 log 43\frac{4}{3}

Explanation

Solution

1/21/2(x+1x1x1x+1)2\int_{- 1/2}^{1/2}\sqrt{\left( \frac{x + 1}{x - 1} - \frac{x - 1}{x + 1} \right)^{2}}

= 1/21/2x+1x1x1x+1dx\int_{- 1/2}^{1/2}{\left| \frac{x + 1}{x - 1} - \frac{x - 1}{x + 1} \right|dx}

= 1/21/24xx21dx=201/24xx21\int_{- 1/2}^{1/2}{\left| \frac{4x}{x^{2} - 1} \right|dx = 2\int_{0}^{1/2}\left| \frac{4x}{x^{2} - 1} \right|}dx

(Q integrand is an even function)

= –201/2(4xx21)dx\int_{0}^{1/2}{\left( \frac{4x}{x^{2} - 1} \right)dx}

(4xx21<0intheite(0,12))()\left( \because\frac{4x}{x^{2} - 1} < 0inthei芀te\left( 0,\frac{1}{2} \right) \right)()

= –4[log (1 – x2) ]01/2\rbrack_{0}^{1/2} = – 4 (log34)\left( \log\frac{3}{4} \right) = 4 log (43)\left( \frac{4}{3} \right).