Question
Question: The value of the integral \(\int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}\) is (A) \(-\cos x+c\) ...
The value of the integral ∫(sin2x)dx is
(A) −cosx+c
(B) cosx+c
(C) −cosx×sgn(sinx)+c
(D) None of These
Solution
We solve this question by first solving the function inside the integral, (sin2x), using the formula, x2=∣x∣. Then we consider the integral and solve in the integral when sinx>0 and sinx<0 using the formula ∫sinxdx=−cosx+c. Then we multiply and divide the obtained value with ∣sinx∣. Then we simplify it and use the function sgnx=x∣x∣ and simplify it to get the result and then combine the both results in the both cases if they are the same.
Complete step by step answer:
We are given the integral ∫(sin2x)dx.
First let us consider the function inside the integral, that is (sin2x).
Now let us consider the property of square roots.
\sqrt{{{x}^{2}}}=\left\\{ \begin{matrix}
x\ \ \ \ if\ x>0 \\\
-x\ \ \ \ if\ x<0 \\\
\end{matrix} \right.
We can also write it as
x2=∣x∣
So, using the above property we can write our given function as,
(sin2x)=∣sinx∣
As we need to find the value of the integral ∫(sin2x)dx, let us substitute the above value in the integral. Then we get,
⇒∫(sin2x)dx=∫∣sinx∣dx
Now let us consider the cases when sinx>0 and when sinx<0. Then we can write it as,
\begin{aligned}
& \Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=\left\\{ \begin{matrix}
\int{\sin xdx}\ \ \ \ if\ \ \sin x>0 \\\
\int{-\sin xdx}\ \ \ \ if\ \ \sin x<0 \\\
\end{matrix} \right. \\\
& \Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=\left\\{ \begin{matrix}
\int{\sin xdx}\ \ \ \ if\ \ \sin x>0 \\\
-\int{\sin xdx}\ \ \ \ if\ \ \sin x<0 \\\
\end{matrix} \right. \\\
\end{aligned}
Now let us consider the formula for integration,
⇒∫sinxdx=−cosx+c
Using this formula, we can write our integral as,
\begin{aligned}
& \Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=\left\\{ \begin{matrix}
-\cos x+c\ \ \ \ if\ \ \sin x>0 \\\
-\left( -\cos x+c \right)\ \ \ \ if\ \ \sin x<0 \\\
\end{matrix} \right. \\\
& \Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=\left\\{ \begin{matrix}
-\cos x+c\ \ \ \ if\ \ \sin x>0 \\\
\cos x+c\ \ \ \ if\ \ \sin x<0 \\\
\end{matrix} \right. \\\
\end{aligned}
Here the sign of c is not changed because it is a constant so it can be positive or negative both so we can write it in the same way.
Now let us divide and multiply with ∣sinx∣. Then we get,
\Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=\left\\{ \begin{matrix}
-\cos x\times \dfrac{\left| \sin x \right|}{\left| \sin x \right|}+c\ \ \ \ if\ \ \sin x>0 \\\
\cos x\times \dfrac{\left| \sin x \right|}{\left| \sin x \right|}+c\ \ \ \ if\ \ \sin x<0 \\\
\end{matrix} \right.
Now let us use the formula of ∣sinx∣ discussed above. Then we get,
\begin{aligned}
& \Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=\left\\{ \begin{matrix}
-\cos x\times \dfrac{\left| \sin x \right|}{\sin x}+c\ \ \ \ if\ \ \sin x>0 \\\
\cos x\times \dfrac{\left| \sin x \right|}{-\sin x}+c\ \ \ \ if\ \ \sin x<0 \\\
\end{matrix} \right. \\\
& \Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=\left\\{ \begin{matrix}
-\cos x\times \dfrac{\left| \sin x \right|}{\sin x}+c\ \ \ \ if\ \ \sin x>0 \\\
-\cos x\times \dfrac{\left| \sin x \right|}{\sin x}+c\ \ \ \ if\ \ \sin x<0 \\\
\end{matrix} \right. \\\
\end{aligned}
As both values are the same now in both the cases.
⇒∫(sin2x)dx=−cosx×sinx∣sinx∣+c
Now let us consider the formula,
sgnx=x∣x∣
Using this we can write our value above as,
⇒∫(sin2x)dx=−cosx×sgn(sinx)+c
So, the correct answer is “Option C”.
Note: There is a possibility of one making a mistake by taking the function inside the integral as (sin2x)=sinx. Then the integral becomes,
⇒∫(sin2x)dx=∫sinxdx
Now let us consider the formula,
∫sinxdx=−cosx+c
Using this formula, we get
⇒∫(sin2x)dx=−cosx+c
So, one might take the answer as Option A.
But here we need to remember that square root of a number is always positive and take the function as (sin2x)=∣sinx∣.