Solveeit Logo

Question

Question: The value of the integral \(\int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}\) is (A) \(-\cos x+c\) ...

The value of the integral (sin2x)dx\int{\sqrt{\left( {{\sin }^{2}}x \right)}dx} is
(A) cosx+c-\cos x+c
(B) cosx+c\cos x+c
(C) cosx×sgn(sinx)+c-\cos x\times \text{sgn} \left( \sin x \right)+c
(D) None of These

Explanation

Solution

We solve this question by first solving the function inside the integral, (sin2x)\sqrt{\left( {{\sin }^{2}}x \right)}, using the formula, x2=x\sqrt{{{x}^{2}}}=\left| x \right|. Then we consider the integral and solve in the integral when sinx>0\sin x>0 and sinx<0\sin x<0 using the formula sinxdx=cosx+c\int{\sin xdx}=-\cos x+c. Then we multiply and divide the obtained value with sinx\left| \sin x \right|. Then we simplify it and use the function sgnx=xx\text{sgn} x=\dfrac{\left| x \right|}{x} and simplify it to get the result and then combine the both results in the both cases if they are the same.

Complete step by step answer:
We are given the integral (sin2x)dx\int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}.
First let us consider the function inside the integral, that is (sin2x)\sqrt{\left( {{\sin }^{2}}x \right)}.
Now let us consider the property of square roots.
\sqrt{{{x}^{2}}}=\left\\{ \begin{matrix} x\ \ \ \ if\ x>0 \\\ -x\ \ \ \ if\ x<0 \\\ \end{matrix} \right.
We can also write it as
x2=x\sqrt{{{x}^{2}}}=\left| x \right|
So, using the above property we can write our given function as,
(sin2x)=sinx\sqrt{\left( {{\sin }^{2}}x \right)}=\left| \sin x \right|
As we need to find the value of the integral (sin2x)dx\int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}, let us substitute the above value in the integral. Then we get,
(sin2x)dx=sinxdx\Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=\int{\left| \sin x \right|dx}
Now let us consider the cases when sinx>0\sin x>0 and when sinx<0\sin x<0. Then we can write it as,
\begin{aligned} & \Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=\left\\{ \begin{matrix} \int{\sin xdx}\ \ \ \ if\ \ \sin x>0 \\\ \int{-\sin xdx}\ \ \ \ if\ \ \sin x<0 \\\ \end{matrix} \right. \\\ & \Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=\left\\{ \begin{matrix} \int{\sin xdx}\ \ \ \ if\ \ \sin x>0 \\\ -\int{\sin xdx}\ \ \ \ if\ \ \sin x<0 \\\ \end{matrix} \right. \\\ \end{aligned}
Now let us consider the formula for integration,
sinxdx=cosx+c\Rightarrow \int{\sin xdx}=-\cos x+c
Using this formula, we can write our integral as,
\begin{aligned} & \Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=\left\\{ \begin{matrix} -\cos x+c\ \ \ \ if\ \ \sin x>0 \\\ -\left( -\cos x+c \right)\ \ \ \ if\ \ \sin x<0 \\\ \end{matrix} \right. \\\ & \Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=\left\\{ \begin{matrix} -\cos x+c\ \ \ \ if\ \ \sin x>0 \\\ \cos x+c\ \ \ \ if\ \ \sin x<0 \\\ \end{matrix} \right. \\\ \end{aligned}
Here the sign of c is not changed because it is a constant so it can be positive or negative both so we can write it in the same way.
Now let us divide and multiply with sinx\left| \sin x \right|. Then we get,
\Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=\left\\{ \begin{matrix} -\cos x\times \dfrac{\left| \sin x \right|}{\left| \sin x \right|}+c\ \ \ \ if\ \ \sin x>0 \\\ \cos x\times \dfrac{\left| \sin x \right|}{\left| \sin x \right|}+c\ \ \ \ if\ \ \sin x<0 \\\ \end{matrix} \right.
Now let us use the formula of sinx\left| \sin x \right| discussed above. Then we get,
\begin{aligned} & \Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=\left\\{ \begin{matrix} -\cos x\times \dfrac{\left| \sin x \right|}{\sin x}+c\ \ \ \ if\ \ \sin x>0 \\\ \cos x\times \dfrac{\left| \sin x \right|}{-\sin x}+c\ \ \ \ if\ \ \sin x<0 \\\ \end{matrix} \right. \\\ & \Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=\left\\{ \begin{matrix} -\cos x\times \dfrac{\left| \sin x \right|}{\sin x}+c\ \ \ \ if\ \ \sin x>0 \\\ -\cos x\times \dfrac{\left| \sin x \right|}{\sin x}+c\ \ \ \ if\ \ \sin x<0 \\\ \end{matrix} \right. \\\ \end{aligned}
As both values are the same now in both the cases.
(sin2x)dx=cosx×sinxsinx+c\Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=-\cos x\times \dfrac{\left| \sin x \right|}{\sin x}+c
Now let us consider the formula,
sgnx=xx\text{sgn} x=\dfrac{\left| x \right|}{x}
Using this we can write our value above as,
(sin2x)dx=cosx×sgn(sinx)+c\Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=-\cos x\times \text{sgn} \left( \sin x \right)+c

So, the correct answer is “Option C”.

Note: There is a possibility of one making a mistake by taking the function inside the integral as (sin2x)=sinx\sqrt{\left( {{\sin }^{2}}x \right)}=\sin x. Then the integral becomes,
(sin2x)dx=sinxdx\Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=\int{\sin xdx}
Now let us consider the formula,
sinxdx=cosx+c\int{\sin xdx}=-\cos x+c
Using this formula, we get
(sin2x)dx=cosx+c\Rightarrow \int{\sqrt{\left( {{\sin }^{2}}x \right)}dx}=-\cos x+c
So, one might take the answer as Option A.
But here we need to remember that square root of a number is always positive and take the function as (sin2x)=sinx\sqrt{\left( {{\sin }^{2}}x \right)}=\left| \sin x \right|.