Solveeit Logo

Question

Mathematics Question on Some Properties of Definite Integrals

The value of the integral 0πxtanxsecx+tanxdx\int^{\pi}_0 \frac{x \tan \, x}{\sec \, x + \tan \, x} dx is equal to

A

π(π21)\pi \left( \frac{\pi}{2} - 1 \right)

B

π2(π1)\frac{\pi}{2} \left( \pi - 1 \right)

C

π(π1)\pi ( \pi - 1)

D

π2(π+1)\frac{\pi}{2} \left( \pi + 1 \right)

Answer

π(π21)\pi \left( \frac{\pi}{2} - 1 \right)

Explanation

Solution

Let I=0πxtanxsecx+tanxdxI=\int_{0}^{\pi} \frac{x \tan x}{\sec x+\tan x} d x
I=0π(πx)tan(πx)sec(πx)+tan(πx)dxI=\int_{0}^{\pi} \frac{(\pi-x) \tan (\pi-x)}{\sec (\pi-x)+\tan (\pi-x)} d x
[0af(x)dx=0af(ax)dx]\left[\because \int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right]
I=0π(πx)tanxsecx+tanxdxI=\int_{0}^{\pi} \frac{(\pi-x) \tan x}{\sec x+\tan x} d x
2I=π0πtanxsecx+tanxdx\Rightarrow 2 I=\pi \int_{0}^{\pi} \frac{\tan x}{\sec x+\tan x} d x
2I=π0πtanx(secxtanx)dx\Rightarrow 2I =\pi \int_{0}^{\pi} \tan x(\sec x-\tan x) d x
2I=π0π(secxtanxtan2x)dx\Rightarrow 2 I =\pi \int_{0}^{\pi}\left(\sec x \tan x-\tan ^{2} x\right) d x
2I=π0π(secxtanxsec2x+1)dx\Rightarrow 2 I=\pi \int_{0}^{\pi}\left(\sec x \tan x-\sec ^{2} x+1\right) d x
2I=π[secxtanx+x]0π\Rightarrow 2I =\pi[\sec x-\tan x+x]_{0}^{\pi}
I=π[(secπtanπ+π)(sec0tan0+0)]\Rightarrow I =\pi[(\sec \pi-\tan \pi+\pi)-(\sec 0-\tan 0+0)]
I=π[π21]\Rightarrow I=\pi\left[\frac{\pi}{2}-1\right]