Question
Mathematics Question on Some Properties of Definite Integrals
The value of the integral ∫0πsecx+tanxxtanxdx is equal to
A
π(2π−1)
B
2π(π−1)
C
π(π−1)
D
2π(π+1)
Answer
π(2π−1)
Explanation
Solution
Let I=∫0πsecx+tanxxtanxdx
I=∫0πsec(π−x)+tan(π−x)(π−x)tan(π−x)dx
[∵∫0af(x)dx=∫0af(a−x)dx]
I=∫0πsecx+tanx(π−x)tanxdx
⇒2I=π∫0πsecx+tanxtanxdx
⇒2I=π∫0πtanx(secx−tanx)dx
⇒2I=π∫0π(secxtanx−tan2x)dx
⇒2I=π∫0π(secxtanx−sec2x+1)dx
⇒2I=π[secx−tanx+x]0π
⇒I=π[(secπ−tanπ+π)−(sec0−tan0+0)]
⇒I=π[2π−1]