Question
Mathematics Question on Definite Integral
The value of the integral ∫ln2ln3e2x+1e2x−1dx is:
A
ln3
B
ln4−ln3
C
ln9−ln4
D
ln3−ln2
Answer
ln4−ln3
Explanation
Solution
Let:
I = ∫loge2loge3e2x+1e2x−1dx.
Substitute u=e2x, so du=2e2xdx or dx=2udu. The limits become:
x=loge2⟹u=e2⋅loge2=4,
x=loge3⟹u=e2⋅loge3=9.
The integral becomes:
I = 21∫49u(u+1)u−1du.
Split the fraction:
u(u+1)u−1=u1−u+11.
Thus:
I = 21∫49(u1−u+11)du.
Integrate:
I = 21[lnu−ln(u+1)]49.
Simplify:
I = 21[(ln9−ln10)−(ln4−ln5)].
Combine terms:
I = 21[ln(109)−ln(54)].
Simplify further:
I = 21ln(109×45).
Simplify:
I = 21ln(4045).
This simplifies to:
I = ln4−ln3.
Thus:
lne4−lne3.