Solveeit Logo

Question

Mathematics Question on Definite Integral

The value of the integral ln2ln3e2x1e2x+1dx\int_{\ln 2}^{\ln 3} \frac{e^{2x} - 1}{e^{2x} + 1} \, dx is:

A

ln3\ln 3

B

ln4ln3\ln 4 - \ln 3

C

ln9ln4\ln 9 - \ln 4

D

ln3ln2\ln 3 - \ln 2

Answer

ln4ln3\ln 4 - \ln 3

Explanation

Solution

Let:

I = loge2loge3e2x1e2x+1dx\int_{\log_{e} 2}^{\log_{e} 3} \frac{e^{2x} - 1}{e^{2x} + 1} dx.

Substitute u=e2xu = e^{2x}, so du=2e2xdxdu = 2e^{2x}dx or dx=du2udx = \frac{du}{2u}. The limits become:

x=loge2    u=e2loge2=4x = \log_{e} 2 \implies u = e^{2 \cdot \log_{e} 2} = 4,

x=loge3    u=e2loge3=9x = \log_{e} 3 \implies u = e^{2 \cdot \log_{e} 3} = 9.

The integral becomes:

I = 1249u1u(u+1)du\frac{1}{2} \int_{4}^{9} \frac{u - 1}{u(u + 1)} du.

Split the fraction:

u1u(u+1)=1u1u+1\frac{u - 1}{u(u + 1)} = \frac{1}{u} - \frac{1}{u + 1}.

Thus:

I = 1249(1u1u+1)du\frac{1}{2} \int_{4}^{9} \left( \frac{1}{u} - \frac{1}{u + 1} \right) du.

Integrate:

I = 12[lnuln(u+1)]49\frac{1}{2} [\ln u - \ln(u + 1)]_{4}^{9}.

Simplify:

I = 12[(ln9ln10)(ln4ln5)]\frac{1}{2} \left[(\ln 9 - \ln 10) - (\ln 4 - \ln 5)\right].

Combine terms:

I = 12[ln(910)ln(45)]\frac{1}{2} \left[\ln \left(\frac{9}{10}\right) - \ln \left(\frac{4}{5}\right)\right].

Simplify further:

I = 12ln(910×54)\frac{1}{2} \ln \left(\frac{9}{10} \times \frac{5}{4}\right).

Simplify:

I = 12ln(4540)\frac{1}{2} \ln \left(\frac{45}{40}\right).

This simplifies to:

I = ln4ln3\ln 4 - \ln 3.

Thus:

lne4lne3\ln_{e} 4 - \ln_{e} 3.