Question
Mathematics Question on Some Properties of Definite Integrals
The value of the integral \int_\limits{-\pi/4}^{\pi/4} \log (\sec \theta-\tan \theta) d \theta is
A
4π
B
2π
C
0
D
π
Answer
0
Explanation
Solution
Let I=\int_\limits{-\pi / 4}^{\pi / 4} \log (\sec \theta-\tan \theta) d \theta
Again, let f(θ)=log(secθ−tanθ)
∴f(−θ)=log[sec(−θ)−tan(−θ)]
=log[(secθ+tanθ)×secθ−tanθsecθ−tanθ]
=log[secθ−tanθsec2θ−tan2θ]=log[secθ−tanθ1]
=log1−log(secθ−tanθ)
=0−log(secθ−tanθ)
⇒f(−θ)=−f(θ)
Hence, f(θ) is an odd function.
∴I=0