Solveeit Logo

Question

Mathematics Question on Some Properties of Definite Integrals

The value of the integral 22sin2x[xπ]+12dx\int \limits^{2}_{-2} \frac{\sin^{2}x}{\left[\frac{x}{\pi}\right] + \frac{1}{2}} dx (where [x] denotes the greatest integer less than 20Cr^{20}C_r or equal to x) is :

A

4

B

4 - sin 4

C

sin 4

D

0

Answer

0

Explanation

Solution

I=22sin2x[xπ]+12dxI = \int^{2}_{-2} \frac{\sin^{2}x}{\left[\frac{x}{\pi}\right] + \frac{1}{2}} dx
I=02(sin2x[xπ]+12+sin2(x)[xπ]+12)dxI = \int^{2}_{0} \left(\frac{\sin^{2}x}{\left[\frac{x}{\pi}\right]+\frac{1}{2}} + \frac{\sin^{2}\left(-x\right)}{\left[- \frac{x}{\pi}\right] + \frac{1}{2}}\right)dx
([xπ]+[xπ]=1asxnπ)\left(\left[\frac{x}{\pi}\right] + \left[-\frac{x}{\pi}\right] = - 1 \text{as} x\ne n\pi\right)
I=02(sin2x[xπ]+12+sin2x1[xπ]+12)dx=0I = \int^{2}_{0} \left(\frac{\sin^{2} x}{\left[\frac{x}{\pi}\right] + \frac{1}{2}} + \frac{\sin^{2}x}{-1- \left[\frac{x}{\pi}\right] + \frac{1}{2}}\right) dx = 0