Question
Mathematics Question on Integrals of Some Particular Functions
The value of the integral 1∫2ex(logex+xx+1)dx is
A
e2(1+loge2)
B
e2−e
C
e2(1+loge2)−e
D
e2−e(1+loge2)
Answer
e2(1+loge2)−e
Explanation
Solution
Let /=∫12ex(logθx+xx+1)dx
\Rightarrow I=\int_\limits{1}^{2}\left(e^{x} \cdot \log _{e} x+e^{x}+\frac{e^{x}}{x}\right) d x
\Rightarrow I=\int_\limits{1}^{2} e^{x} \log _{\theta} x d x+\int_\limits{1}^{2} e^{x} d x+\int_\limits{1}^{2} \frac{e^{x}}{x} d x
\Rightarrow I=\int_\limits{1}^{2} e^{x} \log _{e} x d x+\left[e^{x}\right]_{1}^{2}+\left[e^{x} \log _{\theta} x_{1}^{2}\right.
-\int_\limits{1}^{2} e^{x} \log _{\theta} x d x
⇒I=(e2−e1)+(e2logθ2−0)
=e2(1+logθ 2) −e