Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

The value of the integral 12ex(logex+x+1x)dx \int\limits^2_{1}e^{x} \left(log_{e} \,x + \frac{x+1}{x}\right)dx is

A

e2(1+loge2)e^2(1 + log_e 2)

B

e2ee^2 - e

C

e2(1+loge2)ee^2(1 + log_e 2) - e

D

e2e(1+loge2)e^2 -e(1 + log_e 2)

Answer

e2(1+loge2)ee^2(1 + log_e 2) - e

Explanation

Solution

Let /=12ex(logθx+x+1x)dx/=\int_{1}^{2} e^{x}\left(\log _{\theta} x+\frac{x+1}{x}\right) d x
\Rightarrow I=\int_\limits{1}^{2}\left(e^{x} \cdot \log _{e} x+e^{x}+\frac{e^{x}}{x}\right) d x
\Rightarrow I=\int_\limits{1}^{2} e^{x} \log _{\theta} x d x+\int_\limits{1}^{2} e^{x} d x+\int_\limits{1}^{2} \frac{e^{x}}{x} d x
\Rightarrow I=\int_\limits{1}^{2} e^{x} \log _{e} x d x+\left[e^{x}\right]_{1}^{2}+\left[e^{x} \log _{\theta} x_{1}^{2}\right.
-\int_\limits{1}^{2} e^{x} \log _{\theta} x d x
I=(e2e1)+(e2logθ20)\Rightarrow I=\left(e^{2}-e^{1}\right)+\left(e^{2} \log _{\theta} 2-0\right)
=e2(1+logθ=e^{2}\left(1+\log _{\theta}\right. 2) e-e