Solveeit Logo

Question

Question: The value of the integral \[\int\limits_{1}^{e}{\left\\{ {{\left( \dfrac{x}{e} \right)}^{2x}}-{{\lef...

The value of the integral \int\limits_{1}^{e}{\left\\{ {{\left( \dfrac{x}{e} \right)}^{2x}}-{{\left( \dfrac{e}{x} \right)}^{x}} \right\\}\ln x\ dx} is equal to:
A. 12e1e2\dfrac{1}{2}-e-\dfrac{1}{{{e}^{2}}}
B. 321e12e2\dfrac{3}{2}-\dfrac{1}{e}-\dfrac{1}{2{{e}^{2}}}
C. 12+1e12e2-\dfrac{1}{2}+\dfrac{1}{e}-\dfrac{1}{2{{e}^{2}}}
D. 32e12e2\dfrac{3}{2}-e-\dfrac{1}{2{{e}^{2}}}

Explanation

Solution

To solve this question, we should use the method of substitutions in integration. Let us substitute (xe)x=t{{\left( \dfrac{x}{e} \right)}^{x}}=t and apply logarithm on both sides, we get
ln((xe)x)=lnt xln(xe)=lnt \begin{aligned} & \ln \left( {{\left( \dfrac{x}{e} \right)}^{x}} \right)=\ln t \\\ & \Rightarrow x\ln \left( \dfrac{x}{e} \right)=\ln t \\\ \end{aligned}
Differentiating on both sides, we get
(ln(xe)+x×ex×1e)dx=1tdt (lnxlne+1)dx=1tdt lnxdx=1tdt \begin{aligned} & \left( \ln \left( \dfrac{x}{e} \right)+x\times \dfrac{e}{x}\times \dfrac{1}{e} \right)dx=\dfrac{1}{t}dt \\\ & \Rightarrow \left( \ln x-\ln e+1 \right)dx=\dfrac{1}{t}dt \\\ & \Rightarrow \ln xdx=\dfrac{1}{t}dt \\\ \end{aligned}
Using these substitutions in the integral with the updated limits, we get a simplified form of integration and we can get the answer.

Complete step-by-step answer:
We are asked the value of the integral \int\limits_{1}^{e}{\left\\{ {{\left( \dfrac{x}{e} \right)}^{2x}}-{{\left( \dfrac{e}{x} \right)}^{x}} \right\\}\ln x\ dx}.
To get the answer, we should use a method of substitutions. Let us consider the substitution
(xe)x=t(1){{\left( \dfrac{x}{e} \right)}^{x}}=t\to \left( 1 \right).
Let us apply the logarithm base e to the above equation, we get
ln((xe)x)=lnt\ln \left( {{\left( \dfrac{x}{e} \right)}^{x}} \right)=\ln t
We know the formula lnxa=alnx\ln {{x}^{a}}=a\ln x. Using this in the above equation, we get
xln(xe)=lntx\ln \left( \dfrac{x}{e} \right)=\ln t
Differentiating on both sides, we get
d(xln(xe))=d(lnt)d\left( x\ln \left( \dfrac{x}{e} \right) \right)=d\left( \ln t \right)
We know the product rule in integration which is
d(uv)=ud(v)+vd(u)d\left( uv \right)=ud\left( v \right)+vd\left( u \right)

Using this in the above equation, we get
xd(ln(xe))+ln(xe)d(x)=d(lnt)xd\left( \ln \left( \dfrac{x}{e} \right) \right)+\ln \left( \dfrac{x}{e} \right)d\left( x \right)=d\left( \ln t \right)
We know that d(f(g(x)))=f(g(x))g(x)d\left( f\left( g\left( x \right) \right) \right)=f'\left( g\left( x \right) \right)g'\left( x \right) which is called the chain rule and d(lnx)=1xdxd\left( \ln x \right)=\dfrac{1}{x}dx
Using them in the above equation, we get
(x×1xe×d(xe)+ln(xe)×1)dx=1tdt\left( x\times \dfrac{1}{\dfrac{x}{e}}\times d\left( \dfrac{x}{e} \right)+\ln \left( \dfrac{x}{e} \right)\times 1 \right)dx=\dfrac{1}{t}dt
We can simplify it as
(x×ex×1e+ln(xe))dx=1tdt (1+ln(xe))dx=1tdt \begin{aligned} & \left( x\times \dfrac{e}{x}\times \dfrac{1}{e}+\ln \left( \dfrac{x}{e} \right) \right)dx=\dfrac{1}{t}dt \\\ & \left( 1+\ln \left( \dfrac{x}{e} \right) \right)dx=\dfrac{1}{t}dt \\\ \end{aligned}
We know that ln(ab)=lnalnb\ln \left( \dfrac{a}{b} \right)=\ln a-\ln b
Using it in above equation, we get
(1+lnxlne)dx=1tdt\left( 1+\ln x-\ln e \right)dx=\dfrac{1}{t}dt
We know that lne=1\ln e=1. Using it, we get
(1+lnx1)dx=1tdt lnx dx=1tdt(2) \begin{aligned} & \left( 1+\ln x-1 \right)dx=\dfrac{1}{t}dt \\\ & \Rightarrow \ln x\ dx=\dfrac{1}{t}dt\to \left( 2 \right) \\\ \end{aligned}
Using the equation-1 , the limits of integration will be
x=e(ee)e=t t=1 \begin{aligned} & x=e\Rightarrow {{\left( \dfrac{e}{e} \right)}^{e}}=t \\\ & \Rightarrow t=1 \\\ \end{aligned}
x=1(1e)1=t t=1e \begin{aligned} & x=1\Rightarrow {{\left( \dfrac{1}{e} \right)}^{1}}=t \\\ & \Rightarrow t=\dfrac{1}{e} \\\ \end{aligned}
The integral can be modified in terms of t as
I=\int\limits_{1}^{e}{\left\\{ {{\left( \dfrac{x}{e} \right)}^{2x}}-{{\left( \dfrac{e}{x} \right)}^{x}} \right\\}\ln x\ dx}\Rightarrow I=\int\limits_{\dfrac{1}{e}}^{1}{\left( {{t}^{2}}-\dfrac{1}{t} \right)\dfrac{1}{t}\ dt}
The integral becomes
I=1e1(t1t2) dtI=\int\limits_{\dfrac{1}{e}}^{1}{\left( t-\dfrac{1}{{{t}^{2}}} \right)\ dt}
We know that xndx=xn+1n+1\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}}. Using it in above integral, we get
I=[t1+11+1t2+12+1]1e1=[t22+1t]1e1I=\left[ \dfrac{{{t}^{1+1}}}{1+1}-\dfrac{{{t}^{-2+1}}}{-2+1} \right]_{\dfrac{1}{e}}^{1}=\left[ \dfrac{{{t}^{2}}}{2}+\dfrac{1}{t} \right]_{\dfrac{1}{e}}^{1}
By substituting the limits, we get
I=[(122+11)((1e)22+11e)]=[3212e2e]I=\left[ \left( \dfrac{{{1}^{2}}}{2}+\dfrac{1}{1} \right)-\left( \dfrac{{{\left( \dfrac{1}{e} \right)}^{2}}}{2}+\dfrac{1}{\dfrac{1}{e}} \right) \right]=\left[ \dfrac{3}{2}-\dfrac{1}{2{{e}^{2}}}-e \right]
So, the value of the integral is
I=[32e12e2]I=\left[ \dfrac{3}{2}-e-\dfrac{1}{2{{e}^{2}}} \right]
\therefore The value of the given integral is I=[32e12e2]I=\left[ \dfrac{3}{2}-e-\dfrac{1}{2{{e}^{2}}} \right].

So, the correct answer is “Option D”.

Note: The main trick in the question is the substitution that we did in the process. If we substitute another function, we may not get the result easily. For example, if we substitute lnx=t\ln x=t, we can see that the integral will not be simplified. Students might make a mistake while differentiating the equationxln(xe)=lntx\ln \left( \dfrac{x}{e} \right)=\ln t. Majority of the students forget to multiply the differentiation of xe\dfrac{x}{e} while we differentiate ln(xe)\ln \left( \dfrac{x}{e} \right). They do this in a hurry to get the answer. So, we should carefully differentiate where there is a function and be clear about the chain rule.