Solveeit Logo

Question

Mathematics Question on integral

The value of the integral, \int_\limits{1}^{3}\left[ x ^{2}-2 x -2\right] dx , where [x][x] denotes the greatest integer less than or equal to xx, is :

A

23+1-\sqrt{2}-\sqrt{3}+1

B

231-\sqrt{2}-\sqrt{3}-1

C

-5

D

-4

Answer

231-\sqrt{2}-\sqrt{3}-1

Explanation

Solution

\int_\limits{1}^{3}\left(\left[(x-1)^{2}\right]-3\right) d x =\int_\limits{1}^{2}\left[x^{2}\right]-3 \int_\limits{1}^{3} d x =\int_\limits{1}^{3} 0 d x+\int_\limits{1}^{\sqrt{2}} 1 .d x+\int_\limits{\sqrt{2}}^{\sqrt{3}} 2.d x+\int_\limits{\sqrt{3}}^{2} 3. d x-6 =21+2(32)+3(23)6=\sqrt{2}-1+2(\sqrt{3}-\sqrt{2})+3(2-\sqrt{3})-6 =231=-\sqrt{2}-\sqrt{3}-1