Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

The value of the integral 0π/41+sin2cos3xdx\int\limits_{0}^{\pi/ 4} \frac{1+\sin^{2} }{ \cos^{3} x} dx is

A

1

B

2

C

2 \sqrt{2}

D

22 2 \sqrt{2}

Answer

2 \sqrt{2}

Explanation

Solution

0π41+sin2xcos3xdx\int\limits_{0}^{\frac{\pi}{4}} \frac{1+\sin^{2} x}{ \cos^{3} x} dx
=0π4cos2x+sin2x+sin2xcos3xdx= \int\limits_{0}^{\frac{\pi }{4}} \frac{\cos^{2} x + \sin^{2}x +\sin^{2} x}{\cos^{3} x} dx
=0π4cos2x+2sin2xcos3x.cos3xdx= \int\limits_{0}^{\frac{\pi }{4}} \frac{\cos^{2} x +2 \sin^{2}x }{\cos ^{3} x.\cos^{3} x} dx
=0π4(secx+2tan2xsecx)dx= \int\limits_{0}^{\frac{\pi }{4}} \left(\sec x +2 \tan^{2} x \sec x \right)dx
=0π4secxdx+20π4tanx(secxtanx)dx= \int\limits_{0}^{\frac{\pi }{4}} \sec x dx +2 \int\limits_{0}^{\frac{\pi }{4}} \tan x\left(\sec x \tan x\right)dx
Put secx=tsecxtanxdx=dt\sec x =t \Rightarrow \sec x \tan x dx =dt

If x=0t=1x = 0 \Rightarrow t = 1 and x=π4t=2x = \frac{\pi}{4} \Rightarrow \: t = \sqrt{2}
=[logsecx+tanx]0π4+212t21dt= \left[\log\left|\sec x +\tan x\right|\right]^{\pi 4}_{0} + 2\int\limits_{1}^{\sqrt{2}} \sqrt{t^{2} - 1} dt
=log(2+1)log(1+0)+2[t2t2112logt+t21]12= \log\left|\left(\sqrt{2} +1\right)\right|- \log\left|\left(1+0\right)\right| +2 \left[\frac{t}{2} \sqrt{t^{2} -1} - \frac{1}{2} \log\left|t+ \sqrt{t^{2} -1}\right|\right]^{\sqrt{2}}_{1}
=log2+1+2[2212log2+1]=2= \log\left|\sqrt{2} + 1\right|+ 2\left[\frac{\sqrt{2}}{2} - \frac{1}{2} \log\left|\sqrt{2} + 1\right|\right] = \sqrt{2}