Question
Mathematics Question on Inverse Trigonometric Functions
The value of the integral 0∫π/4cos3x1+sin2dx is
A
1
B
2
C
2
D
22
Answer
2
Explanation
Solution
0∫4πcos3x1+sin2xdx
=0∫4πcos3xcos2x+sin2x+sin2xdx
=0∫4πcos3x.cos3xcos2x+2sin2xdx
=0∫4π(secx+2tan2xsecx)dx
=0∫4πsecxdx+20∫4πtanx(secxtanx)dx
Put secx=t⇒secxtanxdx=dt
If x=0⇒t=1 and x=4π⇒t=2
=[log∣secx+tanx∣]0π4+21∫2t2−1dt
=log(2+1)−log∣(1+0)∣+2[2tt2−1−21logt+t2−1]12
=log2+1+2[22−21log2+1]=2