Solveeit Logo

Question

Mathematics Question on Definite Integral

The value of the integral 0π/211+(tanx)101dx\int\limits_{0}^{\pi / 2} \frac{1}{1+(\tan x)^{101}} d x is equal to

A

11

B

π6\frac{\pi}{6}

C

π8\frac{\pi}{8}

D

π4\frac{\pi}{4}

Answer

π4\frac{\pi}{4}

Explanation

Solution

Let I=0π/211+(tanx)101dxI =\int\limits_{0}^{\pi / 2} \frac{1}{1+(\tan x)^{101}} d x
=\int\limits_{0}^{\pi / 2} \frac{d x}{1+\left\\{\tan \left(\frac{\pi}{2}-x\right)\right\\}^{101}}
=0π/2dx1+(cotx)101=\int\limits_{0}^{\pi / 2} \frac{d x}{1+(\cot x)^{101}}
=0π/2tanx101tanx101+1dx=\int\limits_{0}^{\pi / 2} \frac{\tan x^{101}}{\tan x^{101}+1} d x
=0π/21+tanx10111+tanx101=[x]0π/2I=\int\limits_{0}^{\pi / 2} \frac{1+\tan x^{101}-1}{1+\tan x^{101}}=[x]_{0}^{\pi / 2}-I
I=π2I\Rightarrow I=\frac{\pi}{2}-I
2I=π2\Rightarrow 2 I=\frac{\pi}{2}
I=π4\Rightarrow I=\frac{\pi}{4}