Solveeit Logo

Question

Question: The value of the integral \(\int\limits_{0}^{1}{x{{\cot }^{-1}}\left( 1-{{x}^{2}}+{{x}^{4}} \right)d...

The value of the integral 01xcot1(1x2+x4)dx\int\limits_{0}^{1}{x{{\cot }^{-1}}\left( 1-{{x}^{2}}+{{x}^{4}} \right)dx} is
A. π412loge2\dfrac{\pi }{4}-\dfrac{1}{2}{{\log }_{e}}2
B. π2loge2\dfrac{\pi }{2}{{\log }_{e}}2
C. π212loge2\dfrac{\pi }{2}-\dfrac{1}{2}{{\log }_{e}}2
D. π4loge2\dfrac{\pi }{4}{{\log }_{e}}2

Explanation

Solution

To solve this question, we should know the method of substitutions in integration. In this question, we should substitute x2=t2xdx=dt{{x}^{2}}=t\Rightarrow 2xdx=dt and after that, we can convert the inverse trigonometric function into an inverse tan function. After that, we can adjust the function so that we can split the function into a sum of two inverse tan functions and integrate it.

Complete step-by-step answer:
We are given the integral 01xcot1(1x2+x4)dx\int\limits_{0}^{1}{x{{\cot }^{-1}}\left( 1-{{x}^{2}}+{{x}^{4}} \right)dx}. To solve this integral, we should substitute x2=t{{x}^{2}}=t. Differentiating it, we get
2xdx=dt xdx=dt2 \begin{aligned} & 2xdx=dt \\\ & \Rightarrow xdx=\dfrac{dt}{2} \\\ \end{aligned}.
The limits will be changed as
x=0 x2=t=0 \begin{aligned} & x=0 \\\ & \Rightarrow {{x}^{2}}=t=0 \\\ \end{aligned}
x=1 x2=t=1 \begin{aligned} & x=1 \\\ & \Rightarrow {{x}^{2}}=t=1 \\\ \end{aligned}
Using them in the above integral, we get
I=1201cot1(1t+t2)dtI=\dfrac{1}{2}\int\limits_{0}^{1}{{{\cot }^{-1}}\left( 1-t+{{t}^{2}} \right)dt}
We know the relation between inverse trigonometric functions of tan and cot.
cot1(x)=tan1(1x){{\cot }^{-1}}\left( x \right)={{\tan }^{-1}}\left( \dfrac{1}{x} \right).
This relation is valid for positive values of x. In our question, the integral is from 0 to 1. So, we can apply this condition on the above integral. The integral becomes
I=1201tan1(11t+t2)dtI=\dfrac{1}{2}\int\limits_{0}^{1}{{{\tan }^{-1}}\left( \dfrac{1}{1-t+{{t}^{2}}} \right)dt}
We can write the numerator as 1=t(t1)1=t-\left( t-1 \right), we get
I=1201tan1(t(t1)1+t(t1))dtI=\dfrac{1}{2}\int\limits_{0}^{1}{{{\tan }^{-1}}\left( \dfrac{t-\left( t-1 \right)}{1+t\left( t-1 \right)} \right)dt}
We know the formula related to inverse tan function as
tan1(ab1+ab)=tan1atan1b{{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right)={{\tan }^{-1}}a-{{\tan }^{-1}}b where ab>1ab > -1
In our question we know that 0<t<10 < t < 1 and t(t1)>1t\left( t-1 \right) > -1 for all values of t.
Using this relation, we get
I=1201(tan1ttan1(t1))dtI=\dfrac{1}{2}\int\limits_{0}^{1}{\left( {{\tan }^{-1}}t-{{\tan }^{-1}}\left( t-1 \right) \right)dt}
To integrate tan1t{{\tan }^{-1}}t, we should use integration by parts. It is
uvdx=uvdx(dudxvdx)dx\int{uvdx=u\int{vdx-\int{\left( \dfrac{du}{dx}\int{vdx} \right)}}}dx
In our question, we should use u=tan1t,v=1u={{\tan }^{-1}}t,v=1. We get
1.tan1t=ttan1tt11+t2dt=ttan1t122t1+t2dt tan1t=ttan1t1211+t2d(1+t2)=ttan1t12ln(1+t2) \begin{aligned} & \int{1.{{\tan }^{-1}}t=t{{\tan }^{-1}}t-\int{t\dfrac{1}{1+{{t}^{2}}}dt}}=t{{\tan }^{-1}}t-\dfrac{1}{2}\int{\dfrac{2t}{1+{{t}^{2}}}}dt \\\ & \Rightarrow \int{{{\tan }^{-1}}t=}t{{\tan }^{-1}}t-\dfrac{1}{2}\int{\dfrac{1}{1+{{t}^{2}}}d\left( 1+{{t}^{2}} \right)=}t{{\tan }^{-1}}t-\dfrac{1}{2}\ln \left( 1+{{t}^{2}} \right) \\\ \end{aligned}
Using this result in the above integral, we get
I=1201(tan1ttan1(t1))dt I=12[ttan1t12ln(1+t2)]011201tan1(t1)dt \begin{aligned} & I=\dfrac{1}{2}\int\limits_{0}^{1}{\left( {{\tan }^{-1}}t-{{\tan }^{-1}}\left( t-1 \right) \right)dt} \\\ & \Rightarrow I=\dfrac{1}{2}\left[ t{{\tan }^{-1}}t-\dfrac{1}{2}\ln \left( 1+{{t}^{2}} \right) \right]_{0}^{1}-\dfrac{1}{2}\int\limits_{0}^{1}{{{\tan }^{-1}}\left( t-1 \right)}dt \\\ \end{aligned}
We can use the formula tan1t=ttan1t1211+t2d(1+t2)=ttan1t12ln(1+t2)\int{{{\tan }^{-1}}t=}t{{\tan }^{-1}}t-\dfrac{1}{2}\int{\dfrac{1}{1+{{t}^{2}}}d\left( 1+{{t}^{2}} \right)=}t{{\tan }^{-1}}t-\dfrac{1}{2}\ln \left( 1+{{t}^{2}} \right) by substituting t=t1t=t-1 as the coefficients and the powers of t are same.
The integral becomes
I=12[1tan1112ln(1+12)(0tan1012ln(1+02))]0112[(t1)tan1(t1)12ln(1+(t1)2)]01 I=12[π412ln(2)]12[(0tan1012ln(1+02))(1tan1(1)12ln(1+12))] I=12[π412ln(2)]12[(π412ln(2))] I=12[π412ln(2)]+12[π412ln(2)]=π412ln(2) \begin{aligned} & I=\dfrac{1}{2}\left[ 1{{\tan }^{-1}}1-\dfrac{1}{2}\ln \left( 1+{{1}^{2}} \right)-\left( 0{{\tan }^{-1}}0-\dfrac{1}{2}\ln \left( 1+{{0}^{2}} \right) \right) \right]_{0}^{1}-\dfrac{1}{2}\left[ \left( t-1 \right){{\tan }^{-1}}\left( t-1 \right)-\dfrac{1}{2}\ln \left( 1+{{\left( t-1 \right)}^{2}} \right) \right]_{0}^{1} \\\ & \Rightarrow I=\dfrac{1}{2}\left[ \dfrac{\pi }{4}-\dfrac{1}{2}\ln \left( 2 \right) \right]-\dfrac{1}{2}\left[ \left( 0{{\tan }^{-1}}0-\dfrac{1}{2}\ln \left( 1+{{0}^{2}} \right) \right)-\left( -1{{\tan }^{-1}}\left( -1 \right)-\dfrac{1}{2}\ln \left( 1+{{1}^{2}} \right) \right) \right] \\\ & \Rightarrow I=\dfrac{1}{2}\left[ \dfrac{\pi }{4}-\dfrac{1}{2}\ln \left( 2 \right) \right]-\dfrac{1}{2}\left[ -\left( \dfrac{\pi }{4}-\dfrac{1}{2}\ln \left( 2 \right) \right) \right] \\\ & \Rightarrow I=\dfrac{1}{2}\left[ \dfrac{\pi }{4}-\dfrac{1}{2}\ln \left( 2 \right) \right]+\dfrac{1}{2}\left[ \dfrac{\pi }{4}-\dfrac{1}{2}\ln \left( 2 \right) \right]=\dfrac{\pi }{4}-\dfrac{1}{2}\ln \left( 2 \right) \\\ \end{aligned}

\therefore The value of the integral is π412ln(2)\dfrac{\pi }{4}-\dfrac{1}{2}\ln \left( 2 \right).

So, the correct answer is “Option A”.

Note: Some students can make mistakes while substituting the limits in the final integration. If we ignore the negative sign in the above formula, we might end up getting a value of zero. So, we should do step by step while substituting the limits. While doing the integration of tan1t{{\tan }^{-1}}t, we should know that the selection of u and v functions play a major role in solving the integral. If we exchange the values of u and v, we will not get the answer. So, there is a basic rule in integration by parts which is known as ILATE rule. It means that the order of preference for selecting a function as u in integration by parts is Inverse trigonometric, Logarithmic, Algebraic, Trigonometric, Exponential function. We should use this preference order while selecting the function as u.