Solveeit Logo

Question

Question: The value of the integral \(\int\limits_0^1 {\dfrac{{{x^b} - 1}}{{\log x}}dx} \left( {b > 0} \right)...

The value of the integral 01xb1logxdx(b>0)\int\limits_0^1 {\dfrac{{{x^b} - 1}}{{\log x}}dx} \left( {b > 0} \right) is

Explanation

Solution

We will first express the integral as I(b)I\left( b \right), then use the method of differentiation under the integral sign to simplify the given integral. That is, take the differentiation of the expression with respect to bb. Then, we will get a simplified expression of I(b)I'\left( b \right). Next, integrate the function with respect to xx.

Complete step-by-step answer:
We have to find the value of the integral 01xb1logxdx\int\limits_0^1 {\dfrac{{{x^b} - 1}}{{\log x}}dx} , where (b>0)\left( {b > 0} \right)
Let this integral be denoted by I(b)I\left( b \right)
That is,
I(b)=01xb1logxdxI\left( b \right) = \int\limits_0^1 {\dfrac{{{x^b} - 1}}{{\log x}}dx} (1)
Here, we will follow the method of differentiation under the integral sign to simplify the given integral.
Let us take the derivative of I(b)I\left( b \right) with respect to bb
That is, I(b)=ddb01xb1logxdxI'\left( b \right) = \dfrac{d}{{db}}\int\limits_0^1 {\dfrac{{{x^b} - 1}}{{\log x}}dx}
According to the Leibniz Rule, ddxabf(x,y)dx=abfx(x,y)dx\dfrac{d}{{dx}}\int\limits_a^b {f\left( {x,y} \right)dx} = \int\limits_a^b {{f_x}\left( {x,y} \right)dx}
That is, the derivative of an integral function of two variables is equal to the integral of partial derivatives of that function.
Then, I(b)=ddb01xb1logxdx=01δδbxb1logxdxI'\left( b \right) = \dfrac{d}{{db}}\int\limits_0^1 {\dfrac{{{x^b} - 1}}{{\log x}}dx} = \int\limits_0^1 {\dfrac{\delta }{{\delta b}}\dfrac{{{x^b} - 1}}{{\log x}}dx}
Which then simplifies to I(b)=01log(x)xblogxdxI'\left( b \right) = \int\limits_0^1 {\dfrac{{\log \left( x \right){x^b}}}{{\log x}}dx} because if y=axy = {a^x} then dydx=b(lnx)\dfrac{{dy}}{{dx}} = b\left( {\ln x} \right)
Therefore, we get the differentiation as,
I(b)=01xbdxI'\left( b \right) = \int\limits_0^1 {{x^b}dx}
We can simplify the value of I(b)I'\left( b \right) by integrating the function xbdx{x^b}dx with respect to xx
I(b)=[xb+1b+1]x=0x=1I'\left( b \right) = \left[ {\dfrac{{{x^{b + 1}}}}{{b + 1}}} \right]_{x = 0}^{x = 1}
On putting the limits we’ll, get
I(b)=[1b+10b+1b+1]=1b+1I'\left( b \right) = \left[ {\dfrac{{{1^{b + 1}} - {0^{b + 1}}}}{{b + 1}}} \right] = \dfrac{1}{{b + 1}}
We will now integrate the above expression to find the value of I(b)I\left( b \right)
I(b)=1b+1db=log(b+1)+cI\left( b \right) = \int {\dfrac{1}{{b + 1}}db} = \log \left( {b + 1} \right) + c, where cc is the constant.
I(b)=log(b+1)+cI\left( b \right) = \log \left( {b + 1} \right) + c (2)
We have to find the value of the cc
We have the function I(b)=01xb1logxdxI\left( b \right) = \int\limits_0^1 {\dfrac{{{x^b} - 1}}{{\log x}}dx}
Put b=0b = 0 in the above equation to find the value of I(b)I\left( b \right)
I(0)=01x01logxdx =0  I\left( 0 \right) = \int\limits_0^1 {\dfrac{{{x^0} - 1}}{{\log x}}dx} \\\ = 0 \\\
Hence, b=0b = 0, we get I(b)=0I\left( b \right) = 0
Therefore, on substituting the value of b=0b = 0 and I(b)=0I\left( b \right) = 0 in equation (2)
0=log(0+1)+c 0=0+c c=0  0 = \log \left( {0 + 1} \right) + c \\\ 0 = 0 + c \\\ c = 0 \\\
Thus, I(b)=log(b+1)I\left( b \right) = \log \left( {b + 1} \right).

Note: We use differentiation under integral sign to find certain integrals. It allows us to interchange the order of integration and differentiation. To use this method, the function f(x,t)f\left( {x,t} \right) should be continuous and a partial derivative should exist.