Solveeit Logo

Question

Question: The value of the integral $\int \frac{\sin \theta.\sin 2\theta (\sin^6 \theta + \sin^4 \theta + \sin...

The value of the integral sinθ.sin2θ(sin6θ+sin4θ+sin2θ)2sin4θ+3sin2θ+61cos2θdθ\int \frac{\sin \theta.\sin 2\theta (\sin^6 \theta + \sin^4 \theta + \sin^2 \theta)\sqrt{2\sin^4 \theta + 3\sin^2 \theta + 6}}{1-\cos 2\theta} d\theta is (where c is a constant of integration)

A

118[1118sin2θ+9sin4θ2sin6θ]3/2+c\frac{1}{18}[11-18\sin^2 \theta + 9\sin^4 \theta - 2\sin^6 \theta]^{3/2} + c

B

118[92cos6θ3cos4θ6cos2θ]3/2+c\frac{1}{18}[9-2\cos^6 \theta - 3\cos^4 \theta - 6\cos^2 \theta]^{3/2} + c

C

118[92sin6θ3sin4θ6sin2θ]3/2+c\frac{1}{18}[9-2\sin^6 \theta - 3\sin^4 \theta - 6\sin^2 \theta]^{3/2} + c

D

118[1118cos2θ+9cos4θ2cos6θ]3/2+c\frac{1}{18}[11-18\cos^2 \theta + 9\cos^4 \theta - 2\cos^6 \theta]^{3/2} + c

Answer

(4)

Explanation

Solution

The given integral is I=sinθ.sin2θ(sin6θ+sin4θ+sin2θ)2sin4θ+3sin2θ+61cos2θdθI = \int \frac{\sin \theta.\sin 2\theta (\sin^6 \theta + \sin^4 \theta + \sin^2 \theta)\sqrt{2\sin^4 \theta + 3\sin^2 \theta + 6}}{1-\cos 2\theta} d\theta.

Simplify the integrand using sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta and 1cos2θ=2sin2θ1 - \cos 2\theta = 2\sin^2 \theta:

I=sinθ(2sinθcosθ)(sin6θ+sin4θ+sin2θ)2sin4θ+3sin2θ+62sin2θdθI = \int \frac{\sin \theta \cdot (2\sin \theta \cos \theta) (\sin^6 \theta + \sin^4 \theta + \sin^2 \theta)\sqrt{2\sin^4 \theta + 3\sin^2 \theta + 6}}{2\sin^2 \theta} d\theta

I=cosθ(sin6θ+sin4θ+sin2θ)2sin4θ+3sin2θ+6dθI = \int \cos \theta (\sin^6 \theta + \sin^4 \theta + \sin^2 \theta)\sqrt{2\sin^4 \theta + 3\sin^2 \theta + 6} d\theta.

To find the integral, we can differentiate each option and check if it matches the integrand. Let's check option (4).

Option (4) is 118[1118cos2θ+9cos4θ2cos6θ]3/2+c\frac{1}{18}[11-18\cos^2 \theta + 9\cos^4 \theta - 2\cos^6 \theta]^{3/2} + c.

Let x=sin2θx = \sin^2 \theta. Then cos2θ=1sin2θ=1x\cos^2 \theta = 1-\sin^2 \theta = 1-x.

Substitute cos2θ=1x\cos^2 \theta = 1-x into the expression inside the bracket:

1118(1x)+9(1x)22(1x)311-18(1-x) + 9(1-x)^2 - 2(1-x)^3

=1118+18x+9(12x+x2)2(13x+3x2x3)= 11-18+18x + 9(1-2x+x^2) - 2(1-3x+3x^2-x^3)

=7+18x+918x+9x22+6x6x2+2x3= -7+18x + 9-18x+9x^2 - 2+6x-6x^2+2x^3

=2x3+(9x26x2)+(18x18x+6x)+(7+92)= 2x^3 + (9x^2-6x^2) + (18x-18x+6x) + (-7+9-2)

=2x3+3x2+6x= 2x^3 + 3x^2 + 6x.

So, the term inside the bracket in option (4) is 2sin6θ+3sin4θ+6sin2θ2\sin^6 \theta + 3\sin^4 \theta + 6\sin^2 \theta.

Let Y=2sin6θ+3sin4θ+6sin2θY = 2\sin^6 \theta + 3\sin^4 \theta + 6\sin^2 \theta.

The derivative of option (4) is ddθ(118Y3/2)\frac{d}{d\theta} \left( \frac{1}{18} Y^{3/2} \right).

Using the chain rule, ddθ(118Y3/2)=11832Y1/2dYdθ=112Y1/2dYdθ\frac{d}{d\theta} \left( \frac{1}{18} Y^{3/2} \right) = \frac{1}{18} \cdot \frac{3}{2} Y^{1/2} \cdot \frac{dY}{d\theta} = \frac{1}{12} Y^{1/2} \frac{dY}{d\theta}.

Now, calculate dYdθ\frac{dY}{d\theta}:

dYdθ=ddθ(2sin6θ+3sin4θ+6sin2θ)\frac{dY}{d\theta} = \frac{d}{d\theta} (2\sin^6 \theta + 3\sin^4 \theta + 6\sin^2 \theta)

=2(6sin5θcosθ)+3(4sin3θcosθ)+6(2sinθcosθ)= 2(6\sin^5 \theta \cos \theta) + 3(4\sin^3 \theta \cos \theta) + 6(2\sin \theta \cos \theta)

=12sin5θcosθ+12sin3θcosθ+12sinθcosθ= 12\sin^5 \theta \cos \theta + 12\sin^3 \theta \cos \theta + 12\sin \theta \cos \theta

Factor out 12sinθcosθ12\sin \theta \cos \theta:

=12sinθcosθ(sin4θ+sin2θ+1)= 12\sin \theta \cos \theta (\sin^4 \theta + \sin^2 \theta + 1).

Substitute this back into the derivative of option (4):

112(2sin6θ+3sin4θ+6sin2θ)1/212sinθcosθ(sin4θ+sin2θ+1)\frac{1}{12} (2\sin^6 \theta + 3\sin^4 \theta + 6\sin^2 \theta)^{1/2} \cdot 12\sin \theta \cos \theta (\sin^4 \theta + \sin^2 \theta + 1)

=(2sin6θ+3sin4θ+6sin2θ)1/2sinθcosθ(sin4θ+sin2θ+1)= (2\sin^6 \theta + 3\sin^4 \theta + 6\sin^2 \theta)^{1/2} \cdot \sin \theta \cos \theta (\sin^4 \theta + \sin^2 \theta + 1).

Factor out sin2θ\sin^2 \theta from inside the square root:

=(sin2θ(2sin4θ+3sin2θ+6))1/2sinθcosθ(sin4θ+sin2θ+1)= (\sin^2 \theta (2\sin^4 \theta + 3\sin^2 \theta + 6))^{1/2} \cdot \sin \theta \cos \theta (\sin^4 \theta + \sin^2 \theta + 1)

=sinθ2sin4θ+3sin2θ+6sinθcosθ(sin4θ+sin2θ+1)= |\sin \theta| \sqrt{2\sin^4 \theta + 3\sin^2 \theta + 6} \cdot \sin \theta \cos \theta (\sin^4 \theta + \sin^2 \theta + 1).

Assuming sinθ>0\sin \theta > 0 (which is typically the case for such integrals unless specified otherwise), sinθ=sinθ|\sin \theta| = \sin \theta:

=sin2θcosθ(sin4θ+sin2θ+1)2sin4θ+3sin2θ+6= \sin^2 \theta \cos \theta (\sin^4 \theta + \sin^2 \theta + 1) \sqrt{2\sin^4 \theta + 3\sin^2 \theta + 6}.

Rearrange the terms:

=cosθ(sin2θ(sin4θ+sin2θ+1))2sin4θ+3sin2θ+6= \cos \theta (\sin^2 \theta (\sin^4 \theta + \sin^2 \theta + 1)) \sqrt{2\sin^4 \theta + 3\sin^2 \theta + 6}

=cosθ(sin6θ+sin4θ+sin2θ)2sin4θ+3sin2θ+6= \cos \theta (\sin^6 \theta + \sin^4 \theta + \sin^2 \theta) \sqrt{2\sin^4 \theta + 3\sin^2 \theta + 6}.

This matches the simplified integrand.