Question
Question: The value of the integral $\int \frac{\sin \theta.\sin 2\theta (\sin^6 \theta + \sin^4 \theta + \sin...
The value of the integral ∫1−cos2θsinθ.sin2θ(sin6θ+sin4θ+sin2θ)2sin4θ+3sin2θ+6dθ is (where c is a constant of integration)

181[11−18sin2θ+9sin4θ−2sin6θ]3/2+c
181[9−2cos6θ−3cos4θ−6cos2θ]3/2+c
181[9−2sin6θ−3sin4θ−6sin2θ]3/2+c
181[11−18cos2θ+9cos4θ−2cos6θ]3/2+c
(4)
Solution
The given integral is I=∫1−cos2θsinθ.sin2θ(sin6θ+sin4θ+sin2θ)2sin4θ+3sin2θ+6dθ.
Simplify the integrand using sin2θ=2sinθcosθ and 1−cos2θ=2sin2θ:
I=∫2sin2θsinθ⋅(2sinθcosθ)(sin6θ+sin4θ+sin2θ)2sin4θ+3sin2θ+6dθ
I=∫cosθ(sin6θ+sin4θ+sin2θ)2sin4θ+3sin2θ+6dθ.
To find the integral, we can differentiate each option and check if it matches the integrand. Let's check option (4).
Option (4) is 181[11−18cos2θ+9cos4θ−2cos6θ]3/2+c.
Let x=sin2θ. Then cos2θ=1−sin2θ=1−x.
Substitute cos2θ=1−x into the expression inside the bracket:
11−18(1−x)+9(1−x)2−2(1−x)3
=11−18+18x+9(1−2x+x2)−2(1−3x+3x2−x3)
=−7+18x+9−18x+9x2−2+6x−6x2+2x3
=2x3+(9x2−6x2)+(18x−18x+6x)+(−7+9−2)
=2x3+3x2+6x.
So, the term inside the bracket in option (4) is 2sin6θ+3sin4θ+6sin2θ.
Let Y=2sin6θ+3sin4θ+6sin2θ.
The derivative of option (4) is dθd(181Y3/2).
Using the chain rule, dθd(181Y3/2)=181⋅23Y1/2⋅dθdY=121Y1/2dθdY.
Now, calculate dθdY:
dθdY=dθd(2sin6θ+3sin4θ+6sin2θ)
=2(6sin5θcosθ)+3(4sin3θcosθ)+6(2sinθcosθ)
=12sin5θcosθ+12sin3θcosθ+12sinθcosθ
Factor out 12sinθcosθ:
=12sinθcosθ(sin4θ+sin2θ+1).
Substitute this back into the derivative of option (4):
121(2sin6θ+3sin4θ+6sin2θ)1/2⋅12sinθcosθ(sin4θ+sin2θ+1)
=(2sin6θ+3sin4θ+6sin2θ)1/2⋅sinθcosθ(sin4θ+sin2θ+1).
Factor out sin2θ from inside the square root:
=(sin2θ(2sin4θ+3sin2θ+6))1/2⋅sinθcosθ(sin4θ+sin2θ+1)
=∣sinθ∣2sin4θ+3sin2θ+6⋅sinθcosθ(sin4θ+sin2θ+1).
Assuming sinθ>0 (which is typically the case for such integrals unless specified otherwise), ∣sinθ∣=sinθ:
=sin2θcosθ(sin4θ+sin2θ+1)2sin4θ+3sin2θ+6.
Rearrange the terms:
=cosθ(sin2θ(sin4θ+sin2θ+1))2sin4θ+3sin2θ+6
=cosθ(sin6θ+sin4θ+sin2θ)2sin4θ+3sin2θ+6.
This matches the simplified integrand.