Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

The value of the integral π2π2(x2+logπxπ+x)cosxdx\int ^{\frac{\pi}{2}}_{-\frac{\pi}{2}} \bigg ( x^2 + \log \frac{\pi - x }{ \pi + x } \bigg ) \, \cos \, x \, dx

A

00

B

π224\frac{\pi^2 }{2} - 4

C

π22+4\frac{\pi^2 }{2} + 4

D

π22\frac{ \pi ^2 }{ 2 }

Answer

π224\frac{\pi^2 }{2} - 4

Explanation

Solution

I=π2π2[x2+logπxπ+x]cosxdxI = \int ^{\frac{\pi}{2}}_{-\frac{\pi}{2}} \bigg [ x^2 + \log \frac{\pi - x }{ \pi + x } \bigg ] \, \cos \, x \, dx
As,aaf(x)dx=0,whenf(x)=f(x)As, \int^a_{-a} f ( x ) \, dx = 0 , when \, f ( -x) = -f ( x )
I=I=π2π2x2cosxdx+0=20π2(x2cosx)dx\therefore I = I = \int ^{\frac{\pi}{2}}_{-\frac{\pi}{2}} x^2 \, \cos \, x \, dx + 0 = 2 \int^{\frac{\pi}{2} }_0 ( x^2 \cos x ) \, dx
\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, = 2 \bigg \\{ ( x^2 \, \sin \, x )^{\frac{\pi}{2}}_0 - \int^{\frac{\pi}{2} }_0 \, 2 \, x.\sin\, x \, dx \bigg \\}
\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, = 2 \bigg [ \frac{\pi^2 }{4} -2 \bigg \\{ ( - x .\cos \, x )^{\frac{\pi}{2}} _0 - \int^{\frac{\pi}{2}}_0 1 . ( - \cos \, x ) \, dx \bigg \\} \bigg ]
2[π242(sinx)0π2]=2[π242]=(π224)2 \bigg [ \frac{ \pi^2}{4} - 2 ( \sin \, x )^{\frac{\pi}{2}}_0\bigg ] = 2 \bigg [ \frac{\pi^2}{4} - 2 \bigg ] = \bigg ( \frac{ \pi^2 }{ 2} - 4\bigg )