Question
Mathematics Question on Integrals of Some Particular Functions
The value of the integral ∫−2π2π(x2+logπ+xπ−x)cosxdx
A
0
B
2π2−4
C
2π2+4
D
2π2
Answer
2π2−4
Explanation
Solution
I=∫−2π2π[x2+logπ+xπ−x]cosxdx
As,∫−aaf(x)dx=0,whenf(−x)=−f(x)
∴I=I=∫−2π2πx2cosxdx+0=2∫02π(x2cosx)dx
\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, = 2 \bigg \\{ ( x^2 \, \sin \, x )^{\frac{\pi}{2}}_0 - \int^{\frac{\pi}{2} }_0 \, 2 \, x.\sin\, x \, dx \bigg \\}
\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, = 2 \bigg [ \frac{\pi^2 }{4} -2 \bigg \\{ ( - x .\cos \, x )^{\frac{\pi}{2}} _0 - \int^{\frac{\pi}{2}}_0 1 . ( - \cos \, x ) \, dx \bigg \\} \bigg ]
2[4π2−2(sinx)02π]=2[4π2−2]=(2π2−4)