Solveeit Logo

Question

Mathematics Question on Methods of Integration

The value of the integral dxxx2a2\int \frac{dx}{x \sqrt{x^{2} - a^{2}} } is equal to:

A

c+1asin1axc + \frac{1}{a} \sin^{-1} \frac{a}{|x|}

B

c1asin1axc - \frac{1}{a} \sin^{-1} \frac{a}{|x|}

C

c1acos1axc - \frac{1}{a} \cos^{-1} \frac{a}{|x|}

D

sin1ax+c\sin^{-1} \frac{a}{|x|} + c

Answer

c1asin1axc - \frac{1}{a} \sin^{-1} \frac{a}{|x|}

Explanation

Solution

Let I=dxxx2a2I=\int \frac{d x}{x \sqrt{x^{2}-a^{2}}}
Let, x=1tx=\frac{1}{t}
dx=1t2dt\therefore \, d x =-\frac{1}{t^{2}} \,d t
I=dtt21t(1t2)2a2=1adt(1a)2t2\therefore\, I =\int \frac{-d t}{t^{2} \cdot \frac{1}{t} \sqrt{\left(\frac{1}{t^{2}}\right)^{2}-a^{2}}}=-\frac{1}{a} \int \frac{d t}{\sqrt{\left(\frac{1}{a}\right)^{2}-t^{2}}}
=1asin1t+C=1asin1ax+C=-\frac{1}{a} \sin ^{-1} t+C=-\frac{1}{a} \sin ^{-1} \frac{a}{|x|}+C
=C1asin1ax=C-\frac{1}{a} \sin ^{-1} \frac{a}{|x|}