Solveeit Logo

Question

Mathematics Question on Some Properties of Definite Integrals

The value of the integral 1e2x+e2xdx\int{\frac{1}{{{e}^{2x}}+{{e}^{-2x}}}}\,\,dx is equal to

A

2tan1(e2x)+C2\,{{\tan }^{-1}}\,({{e}^{2x}})+C

B

tan1(e2x)+C{{\tan }^{-1}}\,({{e}^{2x}})+C

C

12tan1(e2x)+C\frac{1}{2}{{\tan }^{-1}}\,({{e}^{2x}})+C

D

1(e2x+e2x)2+C\frac{-1}{{{({{e}^{2x}}+{{e}^{-2x}})}^{2}}}+C

Answer

12tan1(e2x)+C\frac{1}{2}{{\tan }^{-1}}\,({{e}^{2x}})+C

Explanation

Solution

dxe2x+e2xe2xe4x+1dx\int{\frac{dx}{{{e}^{2x}}+{{e}^{-2x}}}}\Rightarrow \,\int{\frac{{{e}^{2x}}}{{{e}^{4x}}+1}}dx
=e2x1+(e2x)2dx,=\int{\frac{{{e}^{2x}}}{1+{{({{e}^{2x}})}^{2}}}}dx,
put t=e2xt={{e}^{2x}} dt=2e2xdxdt=2{{e}^{2x}}\,dx
\Rightarrow dt2(1+t2)=12tan1t+C\int{\frac{dt}{2(1+{{t}^{2}})}}=\frac{1}{2}{{\tan }^{-1}}t+C
\Rightarrow =12tan1(e2x)+C=\frac{1}{2}{{\tan }^{-1}}({{e}^{2x}})+C