Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

The value of the integral e1e2logexxdx\int^{e^2}_{e^{-1}} \bigg | \frac{ \log_e \, x }{ x } \bigg | \, dx is

A

32\frac{3}{2}

B

52\frac{5}{2}

C

3

D

5

Answer

52\frac{5}{2}

Explanation

Solution

e1e2logexxdx=e11logexxdx1e2logexxdx\int^{e^2}_{e^{-1}} \bigg | \frac{ \log_e \, x }{ x } \bigg | \, dx \, = \int^{1}_{e^{-1}} \bigg | \frac{ \log_e \, x }{ x } \bigg | \, dx \, - \int^{e^2}_{{1}} \bigg | \frac{ log_e \, x }{ x } \bigg | \, dx \,
[\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \Bigg [ since , 1 is turning point for logexx| \frac{ \log _e \, x }{x}| for +ve+ ve and ve\, - ve values ] \Bigg ]
=e11logexxdx+1e2logexxdx\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, = - \int^1_{e^{-1} }\frac{ \log _e \, x }{x} \, dx + \int^{e^2}_1 | \frac{ \log _e \, x }{x}| \, dx
=12[(logex)2]e11+12[(logex)2]1e2\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, = -\frac{1}{2} [ ( \log_e \, x )^2 ]^1_{e^{-1}} + \frac{ 1 }{2} [ ( \log _ e \, x )^2]^{e^2 } _ 1
\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, = - \frac{1}{2} \big \\{ 0 - ( - 1 )^2 \big \\} + \frac{1}{2} ( 2^2 - 0 ) = \frac{5}{2}