Question
Mathematics Question on Integrals of Some Particular Functions
The value of the integral ∫e−1e2xlogexdx is
A
23
B
25
C
3
D
5
Answer
25
Explanation
Solution
∫e−1e2xlogexdx=∫e−11xlogexdx−∫1e2xlogexdx
[ since , 1 is turning point for ∣xlogex∣ for +ve and −ve values ]
=−∫e−11xlogexdx+∫1e2∣xlogex∣dx
=−21[(logex)2]e−11+21[(logex)2]1e2
\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, = - \frac{1}{2} \big \\{ 0 - ( - 1 )^2 \big \\} + \frac{1}{2} ( 2^2 - 0 ) = \frac{5}{2}