Solveeit Logo

Question

Question: The value of the integral \(\int{\dfrac{dx}{\cos x-\sin x}}\) is equal to: (a) \(-\dfrac{1}{\sqrt{...

The value of the integral dxcosxsinx\int{\dfrac{dx}{\cos x-\sin x}} is equal to:
(a) 12logtan[x2π8]+C-\dfrac{1}{\sqrt{2}}\log \left| \tan \left[ \dfrac{x}{2}-\dfrac{\pi }{8} \right] \right|+C
(b) 12logcot[x2]+C\dfrac{1}{\sqrt{2}}\log \left| \cot \left[ \dfrac{x}{2} \right] \right|+C
(c) 12logtan[x23π8]+C\dfrac{1}{\sqrt{2}}\log \left| \tan \left[ \dfrac{x}{2}-\dfrac{3\pi }{8} \right] \right|+C
(d) 12logtan[x2+π8]+C\dfrac{1}{\sqrt{2}}\log \left| \tan \left[ \dfrac{x}{2}+\dfrac{\pi }{8} \right] \right|+C

Explanation

Solution

Hint: Multiplying and dividing the given integral with 2\sqrt{2} we get 2dx2(cosxsinx)\int{\dfrac{\sqrt{2}dx}{\sqrt{2}\left( \cos x-\sin x \right)}}. Now, we can rewrite the above equation as dx2(12cosx12sinx)\int{\dfrac{dx}{\sqrt{2}\left( \dfrac{1}{\sqrt{2}}\cos x-\dfrac{1}{\sqrt{2}}\sin x \right)}}. The denominator in this equation apart from 2\sqrt{2} can be written as cos(π4+x)\cos \left( \dfrac{\pi }{4}+x \right)so the integral is reduced to dx2(cos(π4+x))\int{\dfrac{dx}{\sqrt{2}\left( \cos \left( \dfrac{\pi }{4}+x \right) \right)}}. Solving this integral we get 12ln(sec(π4+x)+tan(π4+x))\dfrac{1}{\sqrt{2}}\ln \left( \sec \left( \dfrac{\pi }{4}+x \right)+\tan \left( \dfrac{\pi }{4}+x \right) \right). Using trigonometric properties simplify this new expression.

Complete step-by-step answer:
The integral given in the question is:
dxcosxsinx\int{\dfrac{dx}{\cos x-\sin x}}
Multiplying and dividing 2\sqrt{2} in the above integral we get,
2dx2(cosxsinx)\int{\dfrac{\sqrt{2}dx}{\sqrt{2}\left( \cos x-\sin x \right)}}
Rewriting the above integral we get,
dx2(12cosx12sinx)\int{\dfrac{dx}{\sqrt{2}\left( \dfrac{1}{\sqrt{2}}\cos x-\dfrac{1}{\sqrt{2}}\sin x \right)}}………..Eq. (1)
The denominator in the above integral apart from 2\sqrt{2} is the expansion of cos(π4+x)\cos \left( \dfrac{\pi }{4}+x \right).
cos(π4+x)=cosπ4cosxsinπ4sinx\cos \left( \dfrac{\pi }{4}+x \right)=\cos \dfrac{\pi }{4}\cos x-\sin \dfrac{\pi }{4}\sin x
And we know that the trigonometric value of sinπ4&cosπ4\sin \dfrac{\pi }{4}\And \cos \dfrac{\pi }{4} is 12\dfrac{1}{\sqrt{2}} so substituting this relation in the above equation we get,
cos(π4+x)=12cosx12sinx\cos \left( \dfrac{\pi }{4}+x \right)=\dfrac{1}{\sqrt{2}}\cos x-\dfrac{1}{\sqrt{2}}\sin x
Using these relations in the eq. (1) we get,
dx2(cos(π4+x)) =12(sec(x+π4))dx \begin{aligned} & \int{\dfrac{dx}{\sqrt{2}\left( \cos \left( \dfrac{\pi }{4}+x \right) \right)}} \\\ & =\int{\dfrac{1}{\sqrt{2}}\left( \sec \left( x+\dfrac{\pi }{4} \right) \right)}dx \\\ \end{aligned}
We know that the integration of secx\sec x with respect to x is ln(secx+tanx)+C\ln \left( \sec x+\tan x \right)+C.
12ln(sec(x+π4)+tan(x+π4))+C\dfrac{1}{\sqrt{2}}\ln \left| \left( \sec \left( x+\dfrac{\pi }{4} \right)+\tan \left( x+\dfrac{\pi }{4} \right) \right) \right|+C ………. Eq. (2)
=12ln(1cos(x+π4)+sin(x+π4)cos(x+π4))+C=\dfrac{1}{\sqrt{2}}\ln \left| \left( \dfrac{1}{\cos \left( x+\dfrac{\pi }{4} \right)}+\dfrac{\sin \left( x+\dfrac{\pi }{4} \right)}{\cos \left( x+\dfrac{\pi }{4} \right)} \right) \right|+C
Taking L.C.M of cos(π4+x)\cos \left( \dfrac{\pi }{4}+x \right) in the logarithmic expression we get,
=12ln(1+sin(x+π4)cos(x+π4))+C=\dfrac{1}{\sqrt{2}}\ln \left| \left( \dfrac{1+\sin \left( x+\dfrac{\pi }{4} \right)}{\cos \left( x+\dfrac{\pi }{4} \right)} \right) \right|+C
In the above expression we can write sin(x+π4)&cos(x+π4)\sin \left( x+\dfrac{\pi }{4} \right)\And \cos \left( x+\dfrac{\pi }{4} \right) in terms of tan(x2+π8)\tan \left( \dfrac{x}{2}+\dfrac{\pi }{8} \right) as follows:
12ln(1+2tan(x2+π8)1+tan2(x2+π8)1tan2(x2+π8)1+tan2(x2+π8))+C =12ln(1+tan2(x2+π8)+2tan(x2+π8)1tan2(x2+π8))+C \begin{aligned} & \dfrac{1}{\sqrt{2}}\ln \left| \left( \dfrac{1+\dfrac{2\tan \left( \dfrac{x}{2}+\dfrac{\pi }{8} \right)}{1+{{\tan }^{2}}\left( \dfrac{x}{2}+\dfrac{\pi }{8} \right)}}{\dfrac{1-{{\tan }^{2}}\left( \dfrac{x}{2}+\dfrac{\pi }{8} \right)}{1+{{\tan }^{2}}\left( \dfrac{x}{2}+\dfrac{\pi }{8} \right)}} \right) \right|+C \\\ & =\dfrac{1}{\sqrt{2}}\ln \left| \left( \dfrac{1+{{\tan }^{2}}\left( \dfrac{x}{2}+\dfrac{\pi }{8} \right)+2\tan \left( \dfrac{x}{2}+\dfrac{\pi }{8} \right)}{1-{{\tan }^{2}}\left( \dfrac{x}{2}+\dfrac{\pi }{8} \right)} \right) \right|+C \\\ \end{aligned}
In the above expression, the numerator in the logarithm is the expansion of (1+tan(x2+π8))2{{\left( 1+\tan \left( \dfrac{x}{2}+\dfrac{\pi }{8} \right) \right)}^{2}}.

& \dfrac{1}{\sqrt{2}}\ln \left| \left( \dfrac{{{\left( 1+\tan \left( \dfrac{x}{2}+\dfrac{\pi }{8} \right) \right)}^{2}}}{1-{{\tan }^{2}}\left( \dfrac{x}{2}+\dfrac{\pi }{8} \right)} \right) \right|+C \\\ & =\dfrac{1}{\sqrt{2}}\ln \left| \left( \dfrac{{{\left( 1+\tan \left( \dfrac{x}{2}+\dfrac{\pi }{8} \right) \right)}^{2}}}{\left( 1-\tan \left( \dfrac{x}{2}+\dfrac{\pi }{8} \right)\left( 1+\tan \left( \dfrac{x}{2}+\dfrac{\pi }{8} \right) \right) \right)} \right) \right|+C \\\ \end{aligned}$$ In the above expression $\left( 1+\tan \left( \dfrac{x}{2}+\dfrac{\pi }{8} \right) \right)$ will be cancelled out in the numerator and denominator of the expression in logarithm. $\dfrac{1}{\sqrt{2}}\ln \left| \left( \dfrac{1+\tan \left( \dfrac{x}{2}+\dfrac{\pi }{8} \right)}{1-\tan \left( \dfrac{x}{2}+\dfrac{\pi }{8} \right)} \right) \right|+C$ Rewriting the above expression as: $\begin{aligned} & \dfrac{1}{\sqrt{2}}\ln {{\left| \left( \dfrac{1-\tan \left( \dfrac{x}{2}+\dfrac{\pi }{8} \right)}{1+\tan \left( \dfrac{x}{2}+\dfrac{\pi }{8} \right)} \right) \right|}^{-1}}+C \\\ & =-\dfrac{1}{\sqrt{2}}\ln \left| \left( \dfrac{1-\tan \left( \dfrac{x}{2}+\dfrac{\pi }{8} \right)}{1+\tan \left( \dfrac{x}{2}+\dfrac{\pi }{8} \right)} \right) \right|+C \\\ \end{aligned}$ We can write 1 in the above expression as $\tan \dfrac{\pi }{4}$. $-\dfrac{1}{\sqrt{2}}\ln \left| \left( \dfrac{\tan \dfrac{\pi }{4}-\tan \left( \dfrac{x}{2}+\dfrac{\pi }{8} \right)}{1+\tan \dfrac{\pi }{4}\tan \left( \dfrac{x}{2}+\dfrac{\pi }{8} \right)} \right) \right|+C$ The expression in the logarithm is the expansion of $\tan \left( \dfrac{\pi }{4}-\dfrac{x}{2}-\dfrac{\pi }{8} \right)$. $\begin{aligned} & -\dfrac{1}{\sqrt{2}}\ln \left| \left( \tan \left( \dfrac{\pi }{4}-\dfrac{x}{2}-\dfrac{\pi }{8} \right) \right) \right|+C \\\ & =-\dfrac{1}{\sqrt{2}}\ln \left| \left( \tan \left( \dfrac{\pi }{8}-\dfrac{x}{2} \right) \right) \right|+C \\\ \end{aligned}$ We can write the above expression as: $-\dfrac{1}{\sqrt{2}}\ln \left| \left( -\tan \left( \dfrac{x}{2}-\dfrac{\pi }{8} \right) \right) \right|+C$ $-\dfrac{1}{\sqrt{2}}\ln \left| \left( \tan \left( \dfrac{x}{2}-\dfrac{\pi }{8} \right) \right) \right|+C$ In the above expression “ln” is the abbreviation for log base “e” so we can write “ln” as log. $-\dfrac{1}{\sqrt{2}}\log \left| \tan \left( \dfrac{x}{2}-\dfrac{\pi }{8} \right) \right|+C$ From the above solution, the value of the given integral is $-\dfrac{1}{\sqrt{2}}\log \left| \tan \left( \dfrac{x}{2}-\dfrac{\pi }{8} \right) \right|+C$. Hence, the correct option is (a). Note: You might think we can stop at eq. (2) why we have gone further. The answer is the options in the question are not in the form of eq. (2) so we have simplified it further to reach the expression that the options contain.