Solveeit Logo

Question

Question: The value of the integral \(\int _ { 0 } ^ { \log 5 } \frac { e ^ { x } \sqrt { e ^ { x } - 1 } } {...

The value of the integral 0log5exex1ex+3dx=\int _ { 0 } ^ { \log 5 } \frac { e ^ { x } \sqrt { e ^ { x } - 1 } } { e ^ { x } + 3 } d x =

A

3+2π3 + 2 \pi

B

4π4 - \pi

C

2+π2 + \pi

D

None of these

Answer

4π4 - \pi

Explanation

Solution

Put ex1=t2exdx=2tdte ^ { x } - 1 = t ^ { 2 } \Rightarrow e ^ { x } d x = 2 t d t

Also as x=0x = 0to log5,t=0\log 5 , t = 0to 2

Therefore, 0log5exex1ex+3dx=022t2t2+4dt\int _ { 0 } ^ { \log 5 } \frac { e ^ { x } \sqrt { e ^ { x } - 1 } } { e ^ { x } + 3 } d x = \int _ { 0 } ^ { 2 } \frac { 2 t ^ { 2 } } { t ^ { 2 } + 4 } d t

=2[021dt402dtt2+4]=4π= 2 \left[ \int _ { 0 } ^ { 2 } 1 d t - 4 \int _ { 0 } ^ { 2 } \frac { d t } { t ^ { 2 } + 4 } \right] = 4 - \pi.