Question
Question: The value of the integral \(\int _ { - \pi } ^ { \pi } \sin m x \sin n x d x\) for \(m \neq n\) ...
The value of the integral ∫−ππsinmxsinnxdx for m=n (m,n∈I) is
A
0
B
π
C
2π
D
2π
Answer
0
Explanation
Solution
Let I=2∫0πsinmxsinnxdx=∫0π[cos(m−n)x−cos(m+n)x]dx
=[(m−n)sin(m−n)x−(m+n)sin(m+n)x]0π
=[(m−n)sin(m−n)π−(m+n)sin(m+n)π]=0 .
Since, sin(m−n)π=0=sin(m+n)π for m=n.