Solveeit Logo

Question

Mathematics Question on Definite Integral

The value of the integral 12loge(x+x2+1)dx\int_{-1}^{2} \log_e \left( x + \sqrt{x^2 + 1} \right) \, dx is:

A

52+loge(9+451+2)\sqrt{5} - \sqrt{2} + \log_e \left( \frac{9 + 4\sqrt{5}}{1 + \sqrt{2}} \right)

B

25+loge(9+451+2)\sqrt{2} - \sqrt{5} + \log_e \left( \frac{9 + 4\sqrt{5}}{1 + \sqrt{2}} \right)

C

52+loge(7+451+2)\sqrt{5} - \sqrt{2} + \log_e \left( \frac{7 + 4\sqrt{5}}{1 + \sqrt{2}} \right)

D

25+loge(7+451+2)\sqrt{2} - \sqrt{5} + \log_e \left( \frac{7 + 4\sqrt{5}}{1 + \sqrt{2}} \right)

Answer

25+loge(9+451+2)\sqrt{2} - \sqrt{5} + \log_e \left( \frac{9 + 4\sqrt{5}}{1 + \sqrt{2}} \right)

Explanation

Solution

Let:

f(x)=loge(x+x2+1). f(x) = \log_e \left( x + \sqrt{x^2 + 1} \right) .

Use substitution to simplify the integral. Define u=x+x2+1u = x + \sqrt{x^2 + 1}, so:

du=(1+xx2+1)dx=x2+1+xx2+1dx=ux2+1dx.du = \left( 1 + \frac{x}{\sqrt{x^2 + 1}} \right) dx = \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1}} dx = \frac{u}{\sqrt{x^2 + 1}} dx.

Squaring uu, we find:

u2=x2+1+2xx2+1.u^2 = x^2 + 1 + 2x \sqrt{x^2 + 1}.

Rearrange:

xx2+1=u2x212.x \sqrt{x^2 + 1} = \frac{u^2 - x^2 - 1}{2}.

From symmetry and the bounds x[1,2]x \in [-1, 2], evaluate uu at x=1x = -1 and x=2x = 2:

At x=1x = -1, u=1+2u = -1 + \sqrt{2}.

At x=2x = 2, u=2+5u = 2 + \sqrt{5}.

Substitute back into the integral and compute:

12loge(x+x2+1)dx=25+loge(9+451+2).\int_{-1}^{2} \log_e \left( x + \sqrt{x^2 + 1} \right) dx = \sqrt{2} - \sqrt{5} + \log_e \left( \frac{9 + 4\sqrt{5}}{1 + \sqrt{2}} \right).

Final Answer:

25+loge(9+451+2)\boxed{\sqrt{2} - \sqrt{5} + \log_e \left( \frac{9 + 4\sqrt{5}}{1 + \sqrt{2}} \right)}