Question
Mathematics Question on Definite Integral
The value of the integral ∫−12loge(x+x2+1)dx is:
A
5−2+loge(1+29+45)
B
2−5+loge(1+29+45)
C
5−2+loge(1+27+45)
D
2−5+loge(1+27+45)
Answer
2−5+loge(1+29+45)
Explanation
Solution
Let:
f(x)=loge(x+x2+1).
Use substitution to simplify the integral. Define u=x+x2+1, so:
du=(1+x2+1x)dx=x2+1x2+1+xdx=x2+1udx.
Squaring u, we find:
u2=x2+1+2xx2+1.
Rearrange:
xx2+1=2u2−x2−1.
From symmetry and the bounds x∈[−1,2], evaluate u at x=−1 and x=2:
At x=−1, u=−1+2.
At x=2, u=2+5.
Substitute back into the integral and compute:
∫−12loge(x+x2+1)dx=2−5+loge(1+29+45).
Final Answer:
2−5+loge(1+29+45)