Question
Mathematics Question on Integration
The value of the integral ∫04πsin4(2x)+cos4(2x)xdx
A
82π2
B
162π2
C
322π2
D
642π2
Answer
322π2
Explanation
Solution
I=∫02πsin4(2x)+cos4(2x)xdx
Let 2x=t, then dx=21dt, I=41∫0πsin4t+cos4ttdt Using symmetry: I=41∫02πsin4t+cos4tt+2π−tdt I=41∫02πsin4t+cos4t2πdt−I 2I=8π∫02πsin4t+cos4tdt Let tant=y, then sec2tdt=dy: 2I=8π∫0∞1+y4(1+y2)dy 2I=8π∫0∞y2+1dy Let y=p, then: I=16π∫0∞p2+(2)2dp Using the standard integral formula: I=162π[tan−1(2p)]0∞ I=162π⋅2π I=162π2