Solveeit Logo

Question

Mathematics Question on Integration

The value of the integral 0π4xdxsin4(2x)+cos4(2x)\int_0^{\frac{\pi}{4}} \frac{x \, dx}{\sin^4(2x) + \cos^4(2x)}

A

2π28\frac{\sqrt{2} \pi^2}{8}

B

2π216\frac{\sqrt{2} \pi^2}{16}

C

2π232\frac{\sqrt{2} \pi^2}{32}

D

2π264\frac{\sqrt{2} \pi^2}{64}

Answer

2π232\frac{\sqrt{2} \pi^2}{32}

Explanation

Solution

I=0π2xdxsin4(2x)+cos4(2x) I = \int_{0}^{\frac{\pi}{2}} \frac{x \, dx}{\sin^4(2x) + \cos^4(2x)}
Let 2x=t2x = t, then dx=12dtdx = \frac{1}{2} dt, I=140πtdtsin4t+cos4tI = \frac{1}{4} \int_{0}^{\pi} \frac{t \, dt}{\sin^4 t + \cos^4 t} Using symmetry: I=140π2t+π2tsin4t+cos4tdtI = \frac{1}{4} \int_{0}^{\frac{\pi}{2}} \frac{t + \frac{\pi}{2} - t}{\sin^4 t + \cos^4 t} \, dt I=140π2π2sin4t+cos4tdtII = \frac{1}{4} \int_{0}^{\frac{\pi}{2}} \frac{\frac{\pi}{2}}{\sin^4 t + \cos^4 t} \, dt - I 2I=π80π2dtsin4t+cos4t2I = \frac{\pi}{8} \int_{0}^{\frac{\pi}{2}} \frac{dt}{\sin^4 t + \cos^4 t} Let tant=y\tan t = y, then sec2tdt=dy\sec^2 t \, dt = dy: 2I=π80(1+y2)dy1+y42I = \frac{\pi}{8} \int_{0}^{\infty} \frac{(1 + y^2) \, dy}{1 + y^4} 2I=π80dyy2+12I = \frac{\pi}{8} \int_{0}^{\infty} \frac{dy}{y^2 + 1} Let y=py = p, then: I=π160dpp2+(2)2I = \frac{\pi}{16} \int_{0}^{\infty} \frac{dp}{p^2 + (\sqrt{2})^2} Using the standard integral formula: I=π162[tan1(p2)]0I = \frac{\pi}{16 \sqrt{2}} \left[ \tan^{-1} \left( \frac{p}{\sqrt{2}} \right) \right]_{0}^{\infty} I=π162π2I = \frac{\pi}{16 \sqrt{2}} \cdot \frac{\pi}{2} I=π2162I = \frac{\pi^2}{16 \sqrt{2}}