Solveeit Logo

Question

Mathematics Question on Definite Integral

The value of the integral 01x(1x)49dx\int_{0}^{1}{x{{(1-x)}^{49}}\,dx} is equal to

A

12550\frac{1}{2550}

B

12500\frac{1}{2500}

C

10490\frac{10}{490}

D

149\frac{1}{49}

Answer

12550\frac{1}{2550}

Explanation

Solution

Let I=01x(1x)49dxI=\int_{0}^{1}{x{{(1-x)}^{49}}dx}
=01(1x)[1(1x)]49dx=\int_{0}^{1}{(1-x)\,{{[1-(1-x)]}^{49}}\,dx}
[0af(x)dx=0af(ax)dx]\left[ \because \,\,\int_{0}^{a}{f(x)\,dx=\int_{0}^{a}{f(a-x)\,dx}} \right]
=01(1x)x49dx=\int_{0}^{1}{(1-x){{x}^{49}}\,dx}
=01(x49x50)dx=\int_{0}^{1}{({{x}^{49}}-{{x}^{50}})dx}
=[x5050x5151]01=\left[ \frac{{{x}^{50}}}{50}-\frac{{{x}^{51}}}{51} \right]_{0}^{1}
=(150151)0=150×51=12550=\left( \frac{1}{50}-\frac{1}{51} \right)-0=\frac{1}{50\times 51}=\frac{1}{2550}