Question
Mathematics Question on Integrals of Some Particular Functions
The value of the integral ∫01 elogex3−elogex2e5logex−e4logexdx is
A
31
B
1
C
−31
D
−1
Answer
31
Explanation
Solution
Let I=0∫1elogex3−elogex2e5logex−e4logexdx
=0∫1elogex3−elogex2eloge5−elogex4dx
=0∫1x3−x2x5−x4dx[∵elogex=X]
=0∫1x2(x−1)x4(x−1)dx
=0∫1x2dx
=[3x3]01=313−303
⇒I=31