Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

The value of the integral 01\int_{0}^{1} e5logexe4logexelogex3elogex2dx\frac{e^{5log_{e}x}-e^{4log_{e}x}}{e^{log_{e}x^3}-e^{log_{e}x^2}}dx is

A

13\frac{1}{3}

B

11

C

13-\frac{1}{3}

D

1-1

Answer

13\frac{1}{3}

Explanation

Solution

Let I=01e5logexe4logexelogex3elogex2dxI =\int\limits_{0}^{1} \frac{e^{5 log_{e} x} -e^{4 log_{e} x}}{e^{log_{e} x^3}-e^{log_{e}x^2}} dx
=01eloge5elogex4elogex3elogex2dx= \int\limits_{0}^{1} \frac{e^{log_{e}^5}-e^{log_{e} x^4}}{e^{log_{e} x^3}-e^{log_{e} x^2}} dx
=01x5x4x3x2dx[elogex=X]= \int\limits_{0}^{1} \frac{x^{5}-x^{4}}{x^{3}-x^{2}} dx \left[\because e^{log_{e} x} = X\right]
=01x4(x1)x2(x1)dx= \int\limits_{0}^{1} \frac{x^{4}\left(x-1\right)}{x^{2}\left(x-1\right)}dx
=01x2dx= \int\limits_{0}^{1} x^{2} dx
=[x33]01=133033= \left[\frac{x^{3}}{3}\right]_{0}^{1} = \frac{1^{3}}{3} - \frac{0^{3}}{3}
I=13\Rightarrow I = \frac{1}{3}