Solveeit Logo

Question

Mathematics Question on integral

The value of the integral I=36I=\int\limits^{6}_{{3}} x9x+xdx\frac{\sqrt{x}}{\sqrt{9-x}+\sqrt{x}}dx is :

A

32\frac{3}{2}

B

22

C

11

D

12\frac{1}{2}

Answer

32\frac{3}{2}

Explanation

Solution

Let I=36I=\int\limits^{6}_{{3}} x9x+xdx...(i)\frac{\sqrt{x}}{\sqrt{9-x}+\sqrt{x}}dx ...\left(i\right) =36=\int\limits^{6}_{{3}} 9x99+x+9xdx\frac{\sqrt{9-x}}{\sqrt{9-9+x}+\sqrt{9-x}}dx \Rightarrow I=36I=\int\limits^{6}_{{3}} 9xx+9xdx...(ii)\frac{\sqrt{9-x}}{\sqrt{x}+\sqrt{9-x}}dx ...\left(ii\right) On adding Eqs. (i) and (ii), we get 2I=362I=\int\limits^{6}_{{3}} x+9xx+9xdx\frac{\sqrt{x}+\sqrt{9-x}}{\sqrt{x}+\sqrt{9-x}}dx =36=\int\limits^{6}_{{3}} 1dx=[x]361\,dx=\left[x\right]_{3}^{6} =63=3=6-3=3 I=32\Rightarrow I=\frac{3}{2}