Solveeit Logo

Question

Mathematics Question on Some Properties of Definite Integrals

The value of the integral I=1/20142014tan1xxdxI = \int\limits^{2014}_{1/2014} \frac{\tan^{-1} x}{x} dx is

A

π4log2014\frac{\pi}{4} \log 2014

B

π2log2014\frac{\pi}{2} \log 2014

C

πlog2014\pi \, \log 2014

D

12log2014\frac{1}{2} \log \, 2014

Answer

π2log2014\frac{\pi}{2} \log 2014

Explanation

Solution

We have,
I=1/20142014tan1xxdxI=\int\limits_{1 / 2014}^{2014} \frac{\tan ^{-1} x}{x} d x \dots(i)
Let x=1t x=\frac{1}{t}
dx=1t2dt\Rightarrow d x=\frac{-1}{t^{2}} d t
Now, I=20141/2014tan1(1/t)1/t(1t2dt)I =\int\limits_{2014}^{1 / 2014} \frac{\tan ^{-1}(1 / t)}{1 / t}\left(\frac{-1}{t^{2}} d t\right)
=1/20142014cot1ttdt=\int\limits_{1 / 2014}^{2014} \frac{\cot ^{-1} t}{t} d t
=1/20142014cot1xxdx=\int\limits_{1 / 2014}^{2014} \frac{\cot ^{-1} x}{x} d x \dots(ii)
On adding Eqs. (i) and (ii), we get
2I=1/20142014π/2xdx=π2(logx)1/201420142I =\int\limits_{1 / 2014}^{2014} \frac{\pi / 2}{x} d x=\frac{\pi}{2}(\log x)_{1 / 2014}^{2014}
=π2(log2014log1/2014)=\frac{\pi}{2}(\log 2014-\log 1 / 2014)
I=π4(log2014log12014)\therefore I =\frac{\pi}{4}\left(\log 2014-\log \frac{1}{2014}\right)
=π4(log2014+log2014)=\frac{\pi}{4}(\log 2014+\log 2014)
=π4(2log2014)=π2log2014=\frac{\pi}{4}(2 \log 2014)=\frac{\pi}{2} \log 2014