Question
Mathematics Question on Some Properties of Definite Integrals
The value of the integral I=1/2014∫2014xtan−1xdx is
A
4πlog2014
B
2πlog2014
C
πlog2014
D
21log2014
Answer
2πlog2014
Explanation
Solution
We have,
I=1/2014∫2014xtan−1xdx…(i)
Let x=t1
⇒dx=t2−1dt
Now, I=2014∫1/20141/ttan−1(1/t)(t2−1dt)
=1/2014∫2014tcot−1tdt
=1/2014∫2014xcot−1xdx…(ii)
On adding Eqs. (i) and (ii), we get
2I=1/2014∫2014xπ/2dx=2π(logx)1/20142014
=2π(log2014−log1/2014)
∴I=4π(log2014−log20141)
=4π(log2014+log2014)
=4π(2log2014)=2πlog2014