Question
Mathematics Question on integral
The value of the integral ∫2−π2π(1+ex)(sin6x+cos6x)dx is equal to
A
2π
B
0
C
π
D
2π
Answer
π
Explanation
Solution
I = ∫2−π2π(1+ex)(sin6x+cos6x)dx.....(i)
I = ∫2−π2π(1+e−x)(sin6x+cos6x)dx.....(ii)
From equation (i) & (ii)
2I = ∫2−π2π(sin6x+cos6x)dx = ∫02π(1−43sin22x)dx
⇒I=∫02π(4+tan22x)4sec22xdx=2∫04π4+tan22x4sec22xdx
Now,
tan2x=t and 2sec22xdx=dt
At x=0,t=0
is x=4π,t→∞
∴I=2∫0∞4+t22dt=2(tan−12t)0∞
= 22π=π
Hence, the correct option is (C): π