Solveeit Logo

Question

Mathematics Question on integral

The value of the integral π2π2dx(1+ex)(sin6x+cos6x)∫^{ \frac{π}{2}}_{ \frac{-π}{2}} \frac{dx}{(1+e^x)(sin^6x+cos^6x)} is equal to

A

2π

B

0

C

ππ

D

π2\frac{π}{2}

Answer

ππ

Explanation

Solution

II = π2π2dx(1+ex)(sin6x+cos6x)∫^{ \frac{π}{2}}_{ \frac{-π}{2}} \frac{dx}{(1+e^x)(sin^6x+cos^6x)}.....(i)

II = π2π2dx(1+ex)(sin6x+cos6x)∫^{ \frac{π}{2}}_{ \frac{-π}{2}} \frac{dx}{(1+e^{-x})(sin^6x+cos^6x)}.....(ii)

From equation (i) & (ii)

2I2I = π2π2dx(sin6x+cos6x)∫ ^{\frac{π}{2}} _{\frac{-π}{2}} \frac{dx}{(sin^6x+cos^6x) } = 0π2dx(134sin22x)∫ ^{\frac{π}{2}}_0 \frac{ dx}{(1-\frac{3}{4}sin^22x)}

I=0π24sec22xdx(4+tan22x)=20π44sec22x4+tan22xdx⇒ I = ∫ ^{\frac{π}{2}}_ 0 \frac{4sec^22xdx}{(4+tan^22x)} = 2 ∫^{\frac{π}{4}} _0\frac{ 4sec^22x}{4+tan^22x }dx

Now,

tan2x=ttan2x = t and 2sec22xdx=dt2sec^22xdx = dt

At x=0,t=0x = 0, t = 0

is x=π4,tx = \frac{π}{4}, t →∞

I=202dt4+t2=2(tan1t2)0∴ I = 2 ∫^∞_0 \frac{2dt}{4+t^2} = 2(tan^{-1} \frac{t}{2})^∞_0

= 2π2=π2 \frac{π}{2} = π

Hence, the correct option is (C): π\pi