Solveeit Logo

Question

Mathematics Question on Definite Integral

The value of the integral
48π40π(3πx22x3)sin(x)1+cos2xdx\frac{48}{\pi^4} \int_{0}^{\pi}(\frac{3\pi x^2}{2} - x^3) \frac{ \sin(x)}{1 + \cos^2x} \, dx
is equal to ________

Answer

The correct answer is 6
I=48π40π[π2x)33π24(π2x)+π34]sin(x)dx1+cos2(x)I = \frac{48}{\pi^4} \int_{0}^{\pi}\left[\frac{\pi}{2} - x\right)^3 - \frac{3\pi^2}{4}(\frac{\pi}{2} - x) + \frac{\pi^3}{4}] \frac{ \sin(x)dx}{1 + \cos^2(x)}
Using
abf(x)dx=abf(a+bx)dx\int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx
we get
I=48π40π[π2x)3+3π24(π2x)+π34]sin(x)dx1+cos2(x)I = \frac{48}{\pi^4} \int_{0}^{\pi}\left[\frac{\pi}{2} - x\right)^3 + \frac{3\pi^2}{4}(\frac{\pi}{2} - x) + \frac{\pi^3}{4}] \frac{ \sin(x)dx}{1 + \cos^2(x)}
Adding these two equations, we get
2I=48π40ππ32.sin(x)dx1+cos2(x)2I = \frac{48}{\pi^4} \int_{0}^{\pi}\frac{\pi^{3}}{2}. \frac{ \sin(x)dx}{1 + \cos^2(x)}
I=12π[tan1(cosx)]0π⇒I=\frac{12}{π}[−tan^{−1}⁡(cos⁡x)]^{π}_{0}
=12ππ2=6=\frac{12}{π}⋅\frac{π}{2}=6