Solveeit Logo

Question

Mathematics Question on Some Properties of Definite Integrals

The value of the integral 01\displaystyle \int_0^1 x31+x8dx\frac{x^{3}}{1+x^{8}} dx is equal to

A

π8\frac{\pi}{8}

B

π4\frac{\pi}{4}

C

π16\frac{\pi}{16}

D

π6\frac{\pi}{6}

Answer

π16\frac{\pi}{16}

Explanation

Solution

Let I=01x31+x8dxI=\displaystyle\int_{0}^{1} \frac{x^{3}}{1+x^{8}} d x
Put x4=tx^{4}=t
4x3dx=dt\Rightarrow 4 x^{3}\, d x=d t
I=0111+t214dt=14[tan1t]01\therefore I=\displaystyle \int_{0}^{1} \frac{1}{1+t^{2}} \cdot \frac{1}{4} d t=\frac{1}{4}\left[\tan ^{-1} t\right]_{0}^{1}
=14[tan11tan10]=14[π40]=π16=\frac{1}{4}\left[\tan ^{-1} 1-\tan ^{-1} 0\right]=\frac{1}{4}\left[\frac{\pi}{4}-0\right]=\frac{\pi}{16}