Question
Mathematics Question on Definite Integral
The value of the integral 0∫2π60sinxsin(6x)dx is equal to ______.
Answer
I=0∫2π60⋅sinxsin6xdx
=60.20∫2π(3−4sin2x)(4cos2x−3)cosxdx
=1200∫2π(3−4sin2x)(1−4sin2x)cosxdx
Let sin x = t ⇒ cos x dx = dt
=1200∫1(3−4t2)(1−4t2)dt
=1200∫1(3−16t2+16t4)dt
\begin{array}{l} =120\left[3t-\frac{16t^3}{3}+\frac{16t^5}{5}\right]_0^1\\\= 104 \end{array}