Solveeit Logo

Question

Mathematics Question on Definite Integral

The value of the integral 0π260sin(6x)sinxdx\begin{array}{l} \displaystyle\int\limits_0^{\frac{\pi}{2}}60\frac{\sin\left(6x\right)}{\sin x}dx \end{array} is equal to ______.

Answer

I=0π260sin6xsinxdx\begin{array}{l} I=\displaystyle\int\limits_0^{\frac{\pi}{2}}60\cdot\frac{\sin6x}{\sin x}dx \end{array}

=60.20π2(34sin2x)(4cos2x3)cosxdx\begin{array}{l} =60.2\displaystyle\int\limits_0^{\frac{\pi}{2}}\left(3-4\sin^2x\right)\left(4\cos^2x-3\right)\cos xdx\end{array}

=1200π2(34sin2x)(14sin2x)cosxdx\begin{array}{l} =120\displaystyle\int\limits_0^{\frac{\pi}{2}}\left(3-4\sin^2x\right)\left(1-4\sin^2x\right)\cos xdx\end{array}

Let sin x = t ⇒ cos x dx = dt

=12001(34t2)(14t2)dt\begin{array}{l} =120\displaystyle\int\limits_0^1\left(3-4t^2\right)\left(1-4t^2\right)dt\end{array}

=12001(316t2+16t4)dt\begin{array}{l} =120\displaystyle\int\limits_0^1\left(3-16t^2+16t^4\right)dt\end{array}

\begin{array}{l} =120\left[3t-\frac{16t^3}{3}+\frac{16t^5}{5}\right]_0^1\\\= 104 \end{array}