Solveeit Logo

Question

Mathematics Question on Definite Integral

The value of the sinx+cosx3+sin2xdx\int_{{}}^{{}}{\frac{\sin x+\cos x}{3+\sin 2x}}dx is

A

14ln(2sinx+cosx2+sinx+cosx)+c\frac{1}{4}\ln \left( \frac{2-\sin x+\cos x}{2+\sin x+\cos x} \right)+c

B

12ln\frac{1}{2}\ln (2+sinx2sinx)+c\left( \frac{2+\sin x}{2-\sin x} \right)+c

C

14ln\frac{1}{4}\ln (1+sinx1sinx)+c\left( \frac{1+\sin x}{1-\sin x} \right)+c

D

none of the above

Answer

14ln(2sinx+cosx2+sinx+cosx)+c\frac{1}{4}\ln \left( \frac{2-\sin x+\cos x}{2+\sin x+\cos x} \right)+c

Explanation

Solution

Let I=sinx+cosx3+sin2xdxI=\int \frac{\sin x+\cos x}{3+\sin 2 x} d x
=sinx+cosx4+sin2x1dx=\int \frac{\sin x+\cos x}{4+\sin 2 x-1} d x
I=sinx+cosx4(sinxcosx)2dx\Rightarrow I=\int \frac{\sin x+\cos x}{4-(\sin x-\cos x)^{2}} d x
Let sinxcosx=t\sin x-\cos x=t
(cosx+sinx)dx=dt(\cos x+\sin x) d x=d t
I=dt4t2=14log2t2+t+c\therefore I=\int \frac{d t}{4-t^{2}}=\frac{1}{4} \log \frac{2-t}{2+t}+c
=14log2(sinxcosx)2+(sinx+cosx)+c=\frac{1}{4} \log \frac{2-(\sin x-\cos x)}{2+(\sin x+\cos x)}+c
=14log(2sinx+cosx2+sinx+cosx)+c=\frac{1}{4} \log \left(\frac{2-\sin x+\cos x}{2+\sin x+\cos x}\right)+c