Solveeit Logo

Question

Question: The value of the given integral \(\mathop {\lim }\limits_{x \to 0} \dfrac{1}{{{x^3}}}\int_0^x {\dfra...

The value of the given integral limx01x30xtln(1+t)t4+4dt\mathop {\lim }\limits_{x \to 0} \dfrac{1}{{{x^3}}}\int_0^x {\dfrac{{t\ln \left( {1 + t} \right)}}{{{t^4} + 4}}dt} is
(a)0\left( a \right)0
(b)112\left( b \right)\dfrac{1}{{12}}
(c)124\left( c \right)\dfrac{1}{{24}}
(d)164\left( d \right)\dfrac{1}{{64}}

Explanation

Solution

In this particular question use the concept that if the limit is in the form of 00\dfrac{0}{0} then we use L’ hospitals’ rule i.e. differentiate the numerator and denominator separately so use these concepts to reach the solution of the question.

Complete step-by-step solution:
Given limit
limx01x30xtln(1+t)t4+4dt\mathop {\lim }\limits_{x \to 0} \dfrac{1}{{{x^3}}}\int_0^x {\dfrac{{t\ln \left( {1 + t} \right)}}{{{t^4} + 4}}dt}
Let, L=limx01x30xtln(1+t)t4+4dtL = \mathop {\lim }\limits_{x \to 0} \dfrac{1}{{{x^3}}}\int_0^x {\dfrac{{t\ln \left( {1 + t} \right)}}{{{t^4} + 4}}dt}
L=limx00xtln(1+t)t4+4dtx3\Rightarrow L = \mathop {\lim }\limits_{x \to 0} \dfrac{{\int_0^x {\dfrac{{t\ln \left( {1 + t} \right)}}{{{t^4} + 4}}dt} }}{{{x^3}}}
Now when we substitute x = 0 in the limit we get 00tln(1+t)t4+4dt03=00\dfrac{{\int_0^0 {\dfrac{{t\ln \left( {1 + t} \right)}}{{{t^4} + 4}}dt} }}{{{0^3}}} = \dfrac{0}{0} so it is called as indeterminate form so we use L’ hospitals’ rule i.e. differentiate the numerator as well as the denominator we get,
L=limx0ddx0xtln(1+t)t4+4dtddxx3\Rightarrow L = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{d}{{dx}}\int_0^x {\dfrac{{t\ln \left( {1 + t} \right)}}{{{t^4} + 4}}dt} }}{{\dfrac{d}{{dx}}{x^3}}}
Now as we know that according to Leibniz integral rule, ddx(abg(x)dx)=(g(x))x=b(g(x))x=a\dfrac{d}{{dx}}\left( {\int\limits_a^b {g\left( x \right)dx} } \right) = {\left( {g\left( x \right)} \right)_{x = b}} - {\left( {g\left( x \right)} \right)_{x = a}} so according to this property differentiate the above equation and we also know that ddxxn=nxn1\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}} we have,
L=limx0(tln(1+t)t4+4)t=x(tln(1+t)t4+4)t=03x2\Rightarrow L = \mathop {\lim }\limits_{x \to 0} \dfrac{{{{\left( {\dfrac{{t\ln \left( {1 + t} \right)}}{{{t^4} + 4}}} \right)}_{t = x}} - {{\left( {\dfrac{{t\ln \left( {1 + t} \right)}}{{{t^4} + 4}}} \right)}_{t = 0}}}}{{3{x^2}}}
L=limx0(xln(1+x)x4+4)(0ln(1+0)04+4)3x2=limx0(xln(1+x)x4+4)3x2\Rightarrow L = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\dfrac{{x\ln \left( {1 + x} \right)}}{{{x^4} + 4}}} \right) - \left( {\dfrac{{0\ln \left( {1 + 0} \right)}}{{{0^4} + 4}}} \right)}}{{3{x^2}}} = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {\dfrac{{x\ln \left( {1 + x} \right)}}{{{x^4} + 4}}} \right)}}{{3{x^2}}}
L=limx0ln(1+x)3x(x4+4)\Rightarrow L = \mathop {\lim }\limits_{x \to 0} \dfrac{{\ln \left( {1 + x} \right)}}{{3x\left( {{x^4} + 4} \right)}}
Now the above limit is also written as
L=limx0ln(1+x)x3(x4+4)\Rightarrow L = \mathop {\lim }\limits_{x \to 0} \dfrac{{\dfrac{{\ln \left( {1 + x} \right)}}{x}}}{{3\left( {{x^4} + 4} \right)}}
Now as we all know that limx0ln(1+x)x=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\ln \left( {1 + x} \right)}}{x} = 1 so use this property we have,
L=limx0ln(1+x)xlimx03(x4+4)=13(0+4)=112\Rightarrow L = \dfrac{{\mathop {\lim }\limits_{x \to 0} \dfrac{{\ln \left( {1 + x} \right)}}{x}}}{{\mathop {\lim }\limits_{x \to 0} 3\left( {{x^4} + 4} \right)}} = \dfrac{1}{{3\left( {0 + 4} \right)}} = \dfrac{1}{{12}}
So this is the required value of the limit.
Hence option (b) is the correct answer.

Note: Whenever we face such types of questions the key concept we have to remember the Leibniz integral rule, the differentiation of definite integral is given as ddx(abg(x)dx)=(g(x))x=b(g(x))x=a\dfrac{d}{{dx}}\left( {\int\limits_a^b {g\left( x \right)dx} } \right) = {\left( {g\left( x \right)} \right)_{x = b}} - {\left( {g\left( x \right)} \right)_{x = a}}, and always recall the basic limit property that limx0ln(1+x)x=1\mathop {\lim }\limits_{x \to 0} \dfrac{{\ln \left( {1 + x} \right)}}{x} = 1, so first differentiate then use the basic limit property and then simplify we will get the required value of the limit.