Question
Question: The value of the following trigonometric identity is \({{\sin }^{3}}10{}^\circ +{{\sin }^{3}}50{}^...
The value of the following trigonometric identity is
sin310∘+sin350∘−sin370∘=
A. −23
B. 43
C. −43
D. −83
Solution
Hint: We will use the identity sin3A=3sinA−4sin3A and sinA−sinB=2cos2A+B.Sin2A−B to solve this question. First we use sin3A=3sinA−4sin3A to expand sin310∘+sin350∘−sin370∘and then with the help of some simple trigonometric calculation we will solve this question.
Complete step-by-step answer:
It is given that to find the value of
sin310∘+sin350∘−sin370∘...............(1)
We know that sin3A=3sinA−4sin3A is an identity used in trigonometric calculation.
4sin3A =3sinA−sin3Aorsin3A =41(3sinA−sin3A).............(2)
So, with the help of this identity sin3A=3sinA−4sin3A we will solve this question by putting the value of sin310∘+sin350∘−sin370∘ in equation (2), we get,
sin310∘=41(3sin10∘−sin3×10∘)=41(3sin10∘−sin30∘)orsin350∘=41(3sin50∘−sin3(50∘))=41(3sin50∘−sin150∘)orsin370∘=41(3sin70∘−sin3×70∘)=41(3sin70∘−sin210∘)
Now, putting the value of sin310∘,sin350∘ and sin370∘in equation (1), we get,
sin310∘+sin350∘−sin370∘=41(3sin10∘−sin30∘)+41(3sin50∘−sin150∘)−41(3sin70∘−sin210∘)
Now, by separating the like terms, we get,