Question
Question: The value of the expression $\tan (\tan^{-1}(\frac{1}{2}) + \tan^{-1}(\frac{2}{9}) + \tan^{-1}(\frac...
The value of the expression tan(tan−1(21)+tan−1(92)+tan−1(81)+tan−1(252)+tan−1(181)+......∞), is:
A
2
B
3
C
4
D
5
Answer
3
Explanation
Solution
We note that
tan−1(n+1)−tan−1(n−1)=tan−1(1+(n+1)(n−1)(n+1)−(n−1))=tan−1(n22).Thus, taking n=2,3,4,…, we have:
tan−1(21)=tan−1(3)−tan−1(1),tan−1(92)=tan−1(4)−tan−1(2),etc.So the given sum becomes a telescoping series:
S=n=2∑∞[tan−1(n+1)−tan−1(n−1)].Writing out the terms:
S=(tan−1(3)−tan−1(1))+(tan−1(4)−tan−1(2))+(tan−1(5)−tan−1(3))+⋯.Most terms cancel, leaving:
S=N→∞lim[tan−1(N+1)+tan−1(N)−tan−1(1)−tan−1(2)].Since tan−1(N)→π/2 as N→∞, we have:
S=π−(tan−1(1)+tan−1(2)).But tan−1(1)=4π, hence:
S=π−(4π+tan−1(2))=43π−tan−1(2).We now find:
tanS=tan(43π−tan−1(2)).Using the formula tan(A−B)=1+tanAtanBtanA−tanB, with A=43π (where tan43π=−1) and B=tan−1(2) (so that tanB=2):
tanS=1+(−1)(2)−1−2=1−2−3=−1−3=3.