Solveeit Logo

Question

Question: The value of the expression $\tan (\tan^{-1}(\frac{1}{2}) + \tan^{-1}(\frac{2}{9}) + \tan^{-1}(\frac...

The value of the expression tan(tan1(12)+tan1(29)+tan1(18)+tan1(225)+tan1(118)+......)\tan (\tan^{-1}(\frac{1}{2}) + \tan^{-1}(\frac{2}{9}) + \tan^{-1}(\frac{1}{8}) + \tan^{-1}(\frac{2}{25}) + \tan^{-1}(\frac{1}{18}) + ......\infty), is:

A

2

B

3

C

4

D

5

Answer

3

Explanation

Solution

We note that

tan1(n+1)tan1(n1)=tan1((n+1)(n1)1+(n+1)(n1))=tan1(2n2).\tan^{-1}(n+1)-\tan^{-1}(n-1)=\tan^{-1}\left(\frac{(n+1)-(n-1)}{1+(n+1)(n-1)}\right)=\tan^{-1}\left(\frac{2}{n^2}\right).

Thus, taking n=2,3,4,n=2,3,4,\ldots, we have:

tan1(12)=tan1(3)tan1(1),tan1(29)=tan1(4)tan1(2),etc.\tan^{-1}\left(\frac{1}{2}\right)=\tan^{-1}(3)-\tan^{-1}(1),\quad \tan^{-1}\left(\frac{2}{9}\right)=\tan^{-1}(4)-\tan^{-1}(2),\quad \text{etc.}

So the given sum becomes a telescoping series:

S=n=2[tan1(n+1)tan1(n1)].S=\sum_{n=2}^{\infty}\left[\tan^{-1}(n+1)-\tan^{-1}(n-1)\right].

Writing out the terms:

S=(tan1(3)tan1(1))+(tan1(4)tan1(2))+(tan1(5)tan1(3))+.S=(\tan^{-1}(3)-\tan^{-1}(1)) + (\tan^{-1}(4)-\tan^{-1}(2)) + (\tan^{-1}(5)-\tan^{-1}(3)) + \cdots.

Most terms cancel, leaving:

S=limN[tan1(N+1)+tan1(N)tan1(1)tan1(2)].S=\lim_{N\to\infty}\Big[\tan^{-1}(N+1)+\tan^{-1}(N)-\tan^{-1}(1)-\tan^{-1}(2)\Big].

Since tan1(N)π/2\tan^{-1}(N)\to \pi/2 as NN\to \infty, we have:

S=π(tan1(1)+tan1(2)).S=\pi -\left(\tan^{-1}(1)+\tan^{-1}(2)\right).

But tan1(1)=π4\tan^{-1}(1)=\frac{\pi}{4}, hence:

S=π(π4+tan1(2))=3π4tan1(2).S=\pi-\left(\frac{\pi}{4}+\tan^{-1}(2)\right)=\frac{3\pi}{4}-\tan^{-1}(2).

We now find:

tanS=tan(3π4tan1(2)).\tan S=\tan\Bigl(\frac{3\pi}{4}-\tan^{-1}(2)\Bigr).

Using the formula tan(AB)=tanAtanB1+tanAtanB\tan(A - B)=\frac{\tan A-\tan B}{1+\tan A\,\tan B}, with A=3π4A=\frac{3\pi}{4} (where tan3π4=1\tan\frac{3\pi}{4}=-1) and B=tan1(2)B=\tan^{-1}(2) (so that tanB=2\tan B=2):

tanS=121+(1)(2)=312=31=3.\tan S=\frac{-1-2}{1+(-1)(2)}=\frac{-3}{1-2}=\frac{-3}{-1}=3.