Solveeit Logo

Question

Question: The value of the expression \(\tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)...

The value of the expression tanα+2tan(2α)+4tan(4α)+...+2n1tan(2n1α)+2ncot(2nα)\tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right)+{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right) is

  1. cot(2nα)\cot \left( {{2}^{n}}\alpha \right)
  2. 2ntan(2nα){{2}^{n}}\tan \left( {{2}^{n}}\alpha \right)
  3. 00
  4. cotα\cot \alpha
Explanation

Solution

For finding the value of the given question tanα+2tan(2α)+4tan(4α)+...+2n1tan(2n1α)+2ncot(2nα)\tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right)+{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right) , we will use a different method. In which we will try to find the value of tanα\tan \alpha , 2tan2α2\tan 2\alpha , ….2n1tan(2n1α){{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right) with the use of cotαtanα\cot \alpha -\tan \alpha . Similarly, we will get the value of 2tan2α2\tan 2\alpha , ….2n1tan(2n1α){{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right) and so on. After adding them and then simplifying, we will get the value of the given equation.

Complete step-by-step solution:
Since, the given question, we have:
tanα+2tan(2α)+4tan(4α)+...+2n1tan(2n1α)+2ncot(2nα)\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right)+{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right)
Here, we need to have to find the value of this question. So, we will try to find the value of tanα\tan \alpha with the help of getting sum of tanα+cotα\tan \alpha +\cot \alpha as:
cotαtanα\Rightarrow \cot \alpha -\tan \alpha
As we know that tanα\tan \alpha is equal to 1cotα\dfrac{1}{\cot \alpha } . So, we can write the above step below as:
cotα1cotα\Rightarrow \cot \alpha -\dfrac{1}{\cot \alpha }
Now, we take L.C.M. from denominator to solve the above step as:
cot2α1cotα\Rightarrow \dfrac{{{\cot }^{2}}\alpha -1}{\cot \alpha }
By using the formula of cot2α\cot 2\alpha , we can write the above step below as:
2cot2α\Rightarrow 2\cot 2\alpha
Now, we can write the whole equation as:
cotαtanα=2cot2α\Rightarrow \cot \alpha -\tan \alpha =2\cot 2\alpha
From the above equation, we will get the value of tanα\tan \alpha as:
tanα=cotα2cot2α\Rightarrow \tan \alpha =\cot \alpha -2\cot 2\alpha (1)\left( 1 \right)
Now, similarly we can calculate the value of tan2α\tan 2\alpha and will have the equation as:
tan2α=cot2α2cot4α\Rightarrow \tan 2\alpha =\cot 2\alpha -2\cot 4\alpha
Here, we will multiply by 22 both sides of the above equation and will get:
2tan2α=2cot2α4cot4α\Rightarrow 2\tan 2\alpha =2\cot 2\alpha -4\cot 4\alpha (2)\left( 2 \right)
Similarly, if we replace α\alpha from 4α4\alpha and multiply by 44 in equation (1)\left( 1 \right) will have:
4tan4α=4cot4α8cot8α\Rightarrow 4\tan 4\alpha =4\cot 4\alpha -8\cot 8\alpha (3)\left( 3 \right)
And we will continue this process up to (n1)α\left( n-1 \right)\alpha and will multiply by (n1)\left( n-1 \right) in equation (1)\left( 1 \right) and will get the equation as:
2(n1)tan(2(n1)α)=2(n1)cot(2(n1)α)2(n1+1)cot(2(n1+1)α)\Rightarrow {{2}^{\left( n-1 \right)}}\tan \left( {{2}^{\left( n-1 \right)}}\alpha \right)={{2}^{\left( n-1 \right)}}\cot \left( {{2}^{\left( n-1 \right)}}\alpha \right)-{{2}^{\left( n-1+1 \right)}}\cot \left( {{2}^{\left( n-1+1 \right)}}\alpha \right)
After simplifying the power, we will have the above equation as:
2(n1)tan(2(n1)α)=2(n1)cot(2(n1)α)2ncot(2nα)\Rightarrow {{2}^{\left( n-1 \right)}}\tan \left( {{2}^{\left( n-1 \right)}}\alpha \right)={{2}^{\left( n-1 \right)}}\cot \left( {{2}^{\left( n-1 \right)}}\alpha \right)-{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right)(n1)\left( n-1 \right)
Now, we will add both sides of all the equations from (1)\left( 1 \right) to (n1)\left( n-1 \right) and will get the above equation as:

& \Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right) \\\ & =\cot \alpha -2\cot 2\alpha +2\cot 2\alpha -4\cot 4\alpha +4\cot 4\alpha -8\cot 8\alpha +{{2}^{\left( n-1 \right)}}\cot \left( {{2}^{\left( n-1 \right)}}\alpha \right)-{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right) \\\ \end{aligned}$$ After simplifying the above equation in which we will cancel out some terms, we will have the above equation as: $$\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right)=\cot \alpha -{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right)$$ Here, we will change the place of term $${{2}^{n}}\cot \left( {{2}^{n}}\alpha \right)$$ from right side to left side and the equation will be as: $$\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right)+{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right)=\cot \alpha $$ Hence, this is the solution. **Note:** Here, we will solve the given equation in the other way as: Since, the question is: $\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right)+{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right)$ Now, we will simplify the last two terms as: $$\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+\left[ {{2}^{n-1}}\tan \left( {{2}^{n-1}}\alpha \right)+{{2}^{n}}\cot \left( {{2}^{n}}\alpha \right) \right]$$ Since, we know that we can write $\tan \alpha $ and $\cot \alpha $ in the form of $\sin \alpha $ and $\cos \alpha $ as: $$\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+\left[ {{2}^{n-1}}\dfrac{\sin \left( {{2}^{n-1}}\alpha \right)}{\cos \left( {{2}^{n-1}}\alpha \right)}+{{2}^{n}}\dfrac{\cos \left( {{2}^{n}}\alpha \right)}{\sin \left( {{2}^{n}}\alpha \right)} \right]$$ Further we will simplify as: $$\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\left[ \dfrac{\sin \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)+2\cos \left( {{2}^{n-1}}\alpha \right)\cos \left( {{2}^{n}}\alpha \right)}{\cos \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)} \right]$$ $$\begin{aligned} & \Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+... \\\ & +{{2}^{n-1}}\left[ \dfrac{\sin \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)+\cos \left( {{2}^{n-1}}\alpha \right)\cos \left( {{2}^{n}}\alpha \right)+\cos \left( {{2}^{n-1}}\alpha \right)\cos \left( {{2}^{n}}\alpha \right)}{\cos \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)} \right] \\\ \end{aligned}$$ In the above step, we got the expansion of the formula $\cos \left( {{2}^{n}}-{{2}^{n-1}} \right)\alpha $. So, we will use it as: $$\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\left[ \dfrac{\cos \left( {{2}^{n}}-{{2}^{n-1}} \right)\alpha +\cos \left( {{2}^{n-1}}\alpha \right)\cos \left( {{2}^{n}}\alpha \right)}{\cos \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)} \right]$$ Now, we take ${{2}^{n-1}}$ common as: $$\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\left[ \dfrac{\cos {{2}^{n-1}}\left( 2-1 \right)\alpha +\cos \left( {{2}^{n-1}}\alpha \right)\cos \left( {{2}^{n}}\alpha \right)}{\cos \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)} \right]$$ After solving it, we will have: $$\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\left[ \dfrac{\cos {{2}^{n-1}}\alpha +\cos \left( {{2}^{n-1}}\alpha \right)\cos \left( {{2}^{n}}\alpha \right)}{\cos \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)} \right]$$ Now, we will take common $$\cos {{2}^{n-1}}\alpha $$ in the numerator and will write the above step as: $$\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\left[ \dfrac{\cos \left( {{2}^{n-1}}\alpha \right)\left[ 1+\cos \left( {{2}^{n}}\alpha \right) \right]}{\cos \left( {{2}^{n-1}}\alpha \right)\sin \left( {{2}^{n}}\alpha \right)} \right]$$ From the numerator and denominator, $$\cos {{2}^{n-1}}\alpha $$ will be canceling out as: $$\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\left[ \dfrac{\left[ 1+\cos \left( {{2}^{n}}\alpha \right) \right]}{\sin \left( {{2}^{n}}\alpha \right)} \right]$$ We can write $$\cos \left( {{2}^{n}}\alpha \right)$$ as $$2{{\cos }^{2}}\left( {{2}^{n-1}} \right)\alpha -1$$ and $$\sin \left( {{2}^{n}}\alpha \right)$$ as $2\sin {{\left( 2 \right)}^{n-1}}\alpha .\cos {{\left( 2 \right)}^{n-1}}\alpha $ . Thus, above equation will be as: $$\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\left[ \dfrac{\left[ 1+2{{\cos }^{2}}\left( {{2}^{n-1}} \right)\alpha -1 \right]}{2\sin {{\left( 2 \right)}^{n-1}}\alpha .\cos {{\left( 2 \right)}^{n-1}}\alpha } \right]$$ After solving it we will have the above equation as: $$\Rightarrow \tan \alpha +2\tan \left( 2\alpha \right)+4\tan \left( 4\alpha \right)+...+{{2}^{n-1}}\cot \left( {{2}^{n-1}} \right)\alpha $$ Similarly, we will combine all the term up to $$2\tan \left( 2\alpha \right)$$ and will get in last the equation as: $$\Rightarrow \tan \alpha +2\cot 2\alpha $$ And similarly, we will solve it as we did for last two terms and will have the value as: $$\Rightarrow \cot \alpha $$ Hence, the solution is correct.