Solveeit Logo

Question

Question: The value of the expression \({{\tan }^{-1}}\left( \sec x+\tan x \right)\) in the interval \(\left( ...

The value of the expression tan1(secx+tanx){{\tan }^{-1}}\left( \sec x+\tan x \right) in the interval (0,π2)\left( 0,\dfrac{\pi }{2} \right) is
[a] π4x\dfrac{\pi }{4}-x
[b] xπ4x-\dfrac{\pi }{4}
[c] x+3π4x+\dfrac{3\pi }{4}
[d] x2+π4\dfrac{x}{2}+\dfrac{\pi }{4}

Explanation

Solution

Use the fact that tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x} and secx=1cosx\sec x=\dfrac{1}{\cos x} and hence prove that tanx+secx=1+sinxcosx\tan x+\sec x=\dfrac{1+\sin x}{\cos x}. Use the fact that sinx=cos(π2x)\sin x=\cos \left( \dfrac{\pi }{2}-x \right) and cosx=sin(π2x)\cos x=\sin \left( \dfrac{\pi }{2}-x \right) and hence prove that tanx+secx=1+cos(π2x)sin(π2x)\tan x+\sec x=\dfrac{1+\cos \left( \dfrac{\pi }{2}-x \right)}{\sin \left( \dfrac{\pi }{2}-x \right)}. Put π2x=t\dfrac{\pi }{2}-x=t and use the fact that 1+cosx=2sin2x21+\cos x=2{{\sin }^{2}}\dfrac{x}{2} and sinx=2sinx2cosx2\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}. Hence prove that secx+tanx=tan(π4+x2)\sec x+\tan x=\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right). Use the fact that tan1(tanx)=xx(π2,π2){{\tan }^{-1}}\left( \tan x \right)=x\forall x\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right) and hence find the value of tan1(secx+tanx),x(0,π2){{\tan }^{-1}}\left( \sec x+\tan x \right),x\in \left( 0,\dfrac{\pi }{2} \right)

Complete step by step answer:
Let S=secx+tanxS=\sec x+\tan x
We know that tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x} and secx=1cosx\sec x=\dfrac{1}{\cos x}. Using these identities, we get
S=1cosx+sinxcosxS=\dfrac{1}{\cos x}+\dfrac{\sin x}{\cos x}
Taking cosx as LCM, we get
S=1+sinxcosxS=\dfrac{1+\sin x}{\cos x}
We know that sinx=cos(π2x)\sin x=\cos \left( \dfrac{\pi }{2}-x \right) and cosx=sin(π2x)\cos x=\sin \left( \dfrac{\pi }{2}-x \right). Using these identities, we get
S=1+cos(π2x)sin(π2x)S=\dfrac{1+\cos \left( \dfrac{\pi }{2}-x \right)}{\sin \left( \dfrac{\pi }{2}-x \right)}
Put π2x=t\dfrac{\pi }{2}-x=t, we get
S=1+costsintS=\dfrac{1+\cos t}{\sin t}
We know that 1+cosx=2sin2x21+\cos x=2{{\sin }^{2}}\dfrac{x}{2} and sinx=2sinx2cosx2\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}.
Using the above identity, we get
S=2cos2t22sint2cost2S=\dfrac{2{{\cos }^{2}}\dfrac{t}{2}}{2\sin \dfrac{t}{2}\cos \dfrac{t}{2}}
Cancelling the common factor 2cost22\cos \dfrac{t}{2} from the numerator and denominator, we get
S=cost2sint2S=\dfrac{\cos \dfrac{t}{2}}{\sin \dfrac{t}{2}}
We know that cosxsinx=cotx\dfrac{\cos x}{\sin x}=\cot x
Using the above identity, we get
S=cott2S=\cot \dfrac{t}{2}
We know that cotx=tan(π2x)\cot x=\tan \left( \dfrac{\pi }{2}-x \right)
Using the above identity, we get
S=tan(π2t2)S=\tan \left( \dfrac{\pi }{2}-\dfrac{t}{2} \right)
Reverting to original variable, we get
S=tan(π2π2x2)S=\tan \left( \dfrac{\pi }{2}-\dfrac{\dfrac{\pi }{2}-x}{2} \right)
We know that abc=acbc\dfrac{a-b}{c}=\dfrac{a}{c}-\dfrac{b}{c}
Hence, we have
S=tan(π2π4+x2)=tan(π4+x2)S=\tan \left( \dfrac{\pi }{2}-\dfrac{\pi }{4}+\dfrac{x}{2} \right)=\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right)
Hence, we have
secx+tanx=tan(π4+x2)\sec x+\tan x=\tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right)
Hence, we have
tan1(secx+tanx)=tan1(tan(π4+x2)){{\tan }^{-1}}\left( \sec x+\tan x \right)={{\tan }^{-1}}\left( \tan \left( \dfrac{\pi }{4}+\dfrac{x}{2} \right) \right)
We have x(0,π2)x\in \left( 0,\dfrac{\pi }{2} \right)
Hence, we have x2(0,π4)x2+π4(π4,π2)\dfrac{x}{2}\in \left( 0,\dfrac{\pi }{4} \right)\Rightarrow \dfrac{x}{2}+\dfrac{\pi }{4}\in \left( \dfrac{\pi }{4},\dfrac{\pi }{2} \right)
We know that tan1(tanx)=xx(π2,π2){{\tan }^{-1}}\left( \tan x \right)=x\forall x\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right)
Using the above results, we have
tan1(secx+tanx)=π4+x2x(0,π2){{\tan }^{-1}}\left( \sec x+\tan x \right)=\dfrac{\pi }{4}+\dfrac{x}{2}\forall x\in \left( 0,\dfrac{\pi }{2} \right)

So, the correct answer is “Option D”.

Note: [1] A general way to find the values of tan1tanx,sin1sinx{{\tan }^{-1}}\tan x,{{\sin }^{-1}}\sin x etc is to put these function equal to y and hence arrive at equations of the form tanx=tany,sinx=siny\tan x=\tan y,\sin x=\sin y etc.
Finally use the fact that tany=tanxy=nπ+xZ\tan y=\tan x\Rightarrow y=n\pi +x\in \mathbb{Z} where n is suitable chose so that the value of y is in the interval (π2,π2)\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right) the principal branch of tanx. This is a general method and the student should use this method when he forgets the definition of tan1tanx{{\tan }^{-1}}\tan x as

\vdots \\\ \pi +x,x\in \left( -\dfrac{3\pi }{2},\dfrac{-\pi }{2} \right) \\\ x,x\in \left( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right) \\\ \pi -x,x\in \left( \dfrac{\pi }{2},\dfrac{3\pi }{2} \right) \\\ \vdots \\\ \end{matrix} \right.$$