Solveeit Logo

Question

Question: The value of the expression\[(\sin {36^o})(\sin {72^o})(\sin {108^o})(\sin {144^o})\] is A.\(\dfra...

The value of the expression(sin36o)(sin72o)(sin108o)(sin144o)(\sin {36^o})(\sin {72^o})(\sin {108^o})(\sin {144^o}) is
A.14\dfrac{1}{4}
B.116\dfrac{1}{{16}}
C.34\dfrac{3}{4}
D.516\dfrac{5}{{16}}

Explanation

Solution

First we will convert all angles to the first quadrant using the properties;
sin(180ox)=sinx\sin ({180^o} - x) = \sin x
We will further simplify the expression to convert in the form of cos36° and sin18° as they are defined as having the values
cos36o=5+14 sin18o=514  \cos {36^o} = \dfrac{{\sqrt 5 + 1}}{4} \\\ \sin {18^o} = \dfrac{{\sqrt 5 - 1}}{4} \\\

Complete step-by-step answer:
Given (sin36o)(sin72o)(sin108o)(sin144o)(\sin {36^o})(\sin {72^o})(\sin {108^o})(\sin {144^o})
We first use sin(180ox)=sinx\sin ({180^o} - x) = \sin x, we get,
(sin36o)(sin72o)[sin(180o72o)][sin(180o36o)]\Rightarrow (\sin {36^o})(\sin {72^o})[\sin ({180^o} - {72^o})][\sin ({180^o} - {36^o})]

(sin36o)(sin72o)(sin72o)(sin36o) [(sin36o)(sin72o)]2  \Rightarrow (\sin {36^o})(\sin {72^o})(\sin {72^o})(\sin {36^o}) \\\ \Rightarrow {\left[ {(\sin {{36}^o})(\sin {{72}^o})} \right]^2} \\\

On Multiplying and dividing by 4, we get,
14[2(sin36o)(sin72o)]2\Rightarrow \dfrac{1}{4}{\left[ {2(\sin {{36}^o})(\sin {{72}^o})} \right]^2}
Now on using 2sinAsinB=[cos(AB)cos(A+B)]2\sin A\sin B = [\cos (A - B) - \cos (A + B)], we get,

14[cos36ocos108o]2 14[cos36ocos(90o+18o)]2  \Rightarrow \dfrac{1}{4}{\left[ {\cos {{36}^o} - \cos {{108}^o}} \right]^2} \\\ \Rightarrow \dfrac{1}{4}{\left[ {\cos {{36}^o} - \cos ({{90}^o} + {{18}^o})} \right]^2} \\\

On using cos(90o+x) = sinx\cos \left( {{{90}^o} + x} \right){\text{ }} = {\text{ }} - \sin x, we get,

On substituting the value of cos36o=5+14\cos {36^o} = \dfrac{{\sqrt 5 + 1}}{4}and sin18o=514\sin {18^o} = \dfrac{{\sqrt 5 - 1}}{4}we get,

14 [5 + 14 + 5  14]2 14 [5 + 1+5  14 ]2 14[254]2 On squaring we get, 14[4(5)16] 14(54) 516  \Rightarrow \dfrac{1}{4}{\text{ }}{\left[ {\dfrac{{\sqrt 5 {\text{ }} + {\text{ }}1}}{4}{\text{ }} + {\text{ }}\dfrac{{\sqrt 5 {\text{ }} - {\text{ }}1}}{4}} \right]^2} \\\ \Rightarrow \dfrac{1}{4}{\text{ }}{\left[ {\dfrac{{\sqrt 5 {\text{ }} + {\text{ }}1 + \sqrt 5 {\text{ }} - {\text{ }}1}}{4}{\text{ }}} \right]^2} \\\ \Rightarrow \dfrac{1}{4}{\left[ {\dfrac{{2\sqrt 5 }}{4}} \right]^2} \\\ On{\text{ }}squaring{\text{ }}we{\text{ }}get, \\\ \Rightarrow \dfrac{1}{4}\left[ {\dfrac{{4(5)}}{{16}}} \right] \\\ \Rightarrow \dfrac{1}{4}\left( {\dfrac{5}{4}} \right) \\\ \Rightarrow \dfrac{5}{{16}} \\\

Hence, option (D) is correct.

Note: Whenever solving trigonometric expressions if there is any angle not lying in the first quadrant then try to make it in the first quadrant using the formulas and then try to simplify further, it will make the problem easier.
An alternative method to solve is,

=(sin36o)(sin72o)(sin108o)(sin144o) =(sin36o)(sin72o)[sin(180o72o)][sin(180o36o)] using, sin(180ox)=sinx =(sin36o)(sin72o)(sin72o)(sin36o) =[(sin36o)(sin72o)]2 =[(sin36o)(sin(90o18o))]2 using, sinx=1cos2x and, sin(90ox)=cosx =[(1cos236o)(cos18o)]2 using, cosx=1sin2x =[(1cos236o)(1sin218o)]2 putting the value of cos36o=5+14 and, sin18o=514 =[1(5+14)21(514)2]2 =[165125161651+2516]2 =[116102510+25]2 =102(25)2256 =10020256 =80256 =516  = (\sin {36^o})(\sin {72^o})(\sin {108^o})(\sin {144^o}) \\\ = (\sin {36^o})(\sin {72^o})[\sin ({180^o} - {72^o})][\sin ({180^o} - {36^o})] \\\ u\sin g,{\text{ }}\sin ({180^o} - x) = \sin x \\\ = (\sin {36^o})(\sin {72^o})(\sin {72^o})(\sin {36^o}) \\\ = {\left[ {(\sin {{36}^o})(\sin {{72}^o})} \right]^2} \\\ = {\left[ {(\sin {{36}^o})(\sin ({{90}^o} - {{18}^o}))} \right]^2} \\\ using,{\text{ }}\sin x = \sqrt {1 - {{\cos }^2}x} {\text{ }}and,{\text{ }}\sin ({90^o} - x) = \cos x \\\ = {\left[ {(\sqrt {1 - {{\cos }^2}{{36}^o}} )(\cos {{18}^o})} \right]^2} \\\ using,{\text{ }}\cos x = \sqrt {1 - {{\sin }^2}x} \\\ = {\left[ {(\sqrt {1 - {{\cos }^2}{{36}^o}} )(\sqrt {1 - {{\sin }^2}{{18}^o}} )} \right]^2} \\\ putting{\text{ }}the{\text{ }}value{\text{ }}of{\text{ }}\cos {36^o} = \dfrac{{\sqrt 5 + 1}}{4}{\text{ }}and,{\text{ }}\sin {18^o} = \dfrac{{\sqrt 5 - 1}}{4} \\\ = {\left[ {\sqrt {1 - {{\left( {\dfrac{{\sqrt 5 + 1}}{4}} \right)}^2}} \sqrt {1 - {{\left( {\dfrac{{\sqrt 5 - 1}}{4}} \right)}^2}} } \right]^2} \\\ = {\left[ {\sqrt {\dfrac{{16 - 5 - 1 - 2\sqrt 5 }}{{16}}} \sqrt {\dfrac{{16 - 5 - 1 + 2\sqrt 5 }}{{16}}} } \right]^2} \\\ = {\left[ {\dfrac{1}{{16}}\sqrt {10 - 2\sqrt 5 } \sqrt {10 + 2\sqrt 5 } } \right]^2} \\\ = \dfrac{{{{10}^2} - {{\left( {2\sqrt 5 } \right)}^2}}}{{256}} \\\ = \dfrac{{100 - 20}}{{256}} \\\ = \dfrac{{80}}{{256}} \\\ = \dfrac{5}{{16}} \\\