Solveeit Logo

Question

Question: The value of the expression \({}^{n+1}{{C}_{2}}+2\left[ {}^{2}{{C}_{2}}+{}^{3}{{C}_{2}}+{}^{4}{{C}_{...

The value of the expression n+1C2+2[2C2+3C2+4C2+...+nC2]{}^{n+1}{{C}_{2}}+2\left[ {}^{2}{{C}_{2}}+{}^{3}{{C}_{2}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}} \right] is n(n+k)(pn+m)h\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}. Find k+m+p+hk+m+p+h.

Explanation

Solution

First, we must reduce the expression 2C2+3C2+4C2+...+nC2{}^{2}{{C}_{2}}+{}^{3}{{C}_{2}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}} by using the property nCr+nCr+1=n+1Cr+1{}^{n}{{C}_{r}}+{}^{n}{{C}_{r+1}}={}^{n+1}{{C}_{r+1}} and the fact that nCn=1{}^{n}{{C}_{n}}=1. Then, we can evaluate the given equation using the definition nCr=n!r!(nr)!{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}. By comparing, we can find the value of k, m, p and h.

Complete step-by-step solution:
We all know very well that the combination of r distinct objects from a set of n distinct objects is defined as nCr=n!r!(nr)!{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}.
For r = n, we can write that nCn=n!n!(nn)!{}^{n}{{C}_{n}}=\dfrac{n!}{n!\left( n-n \right)!}.
Hence, we get nCn=10!{}^{n}{{C}_{n}}=\dfrac{1}{0!}.
We know that the factorial of 0 is defined as 1. Thus, we can write that
nCn=1{}^{n}{{C}_{n}}=1.
Thus, we now have 2C2=3C3=1{}^{2}{{C}_{2}}={}^{3}{{C}_{3}}=1.
Hence, we can write
2C2+3C2+4C2+...+nC2=3C3+3C2+4C2+...+nC2...(i){}^{2}{{C}_{2}}+{}^{3}{{C}_{2}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}={}^{3}{{C}_{3}}+{}^{3}{{C}_{2}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}...\left( i \right)
We know the property that
nCr+nCr+1=n+1Cr+1{}^{n}{{C}_{r}}+{}^{n}{{C}_{r+1}}={}^{n+1}{{C}_{r+1}}.
Hence, we can say that 3C2+3C3=4C3{}^{3}{{C}_{2}}+{}^{3}{{C}_{3}}={}^{4}{{C}_{3}}.
Thus, using the above value on the right hand side of equation (i), we get
2C2+3C2+4C2+...+nC2=4C3+4C2+...+nC2...(ii){}^{2}{{C}_{2}}+{}^{3}{{C}_{2}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}={}^{4}{{C}_{3}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}...\left( ii \right)
Using the same property again, we can write 4C2+4C3=5C3{}^{4}{{C}_{2}}+{}^{4}{{C}_{3}}={}^{5}{{C}_{3}}.
Thus, using the above value on the right hand side of equation (ii), we get
2C2+3C2+4C2+...+nC2=5C3+5C2+...+nC2{}^{2}{{C}_{2}}+{}^{3}{{C}_{2}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}={}^{5}{{C}_{3}}+{}^{5}{{C}_{2}}+...+{}^{n}{{C}_{2}}
We can reduce the above equation in the same way, to get
2C2+3C2+4C2+...+nC2=nC3+nC2{}^{2}{{C}_{2}}+{}^{3}{{C}_{2}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}={}^{n}{{C}_{3}}+{}^{n}{{C}_{2}}
And hence, we get
2C2+3C2+4C2+...+nC2=n+1C3{}^{2}{{C}_{2}}+{}^{3}{{C}_{2}}+{}^{4}{{C}_{2}}+...+{}^{n}{{C}_{2}}={}^{n+1}{{C}_{3}}.
So, we can write the given equation as
n+1C2+2[n+1C3]=n(n+k)(pn+m)h{}^{n+1}{{C}_{2}}+2\left[ {}^{n+1}{{C}_{3}} \right]=\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}
We can write the above equation as
n+1C2+n+1C3+n+1C3=n(n+k)(pn+m)h{}^{n+1}{{C}_{2}}+{}^{n+1}{{C}_{3}}+{}^{n+1}{{C}_{3}}=\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}
Using the property nCr+nCr+1=n+1Cr+1{}^{n}{{C}_{r}}+{}^{n}{{C}_{r+1}}={}^{n+1}{{C}_{r+1}} on the left hand side of above equation, we can write
n+2C3+n+1C3=n(n+k)(pn+m)h{}^{n+2}{{C}_{3}}+{}^{n+1}{{C}_{3}}=\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}.
Using the definition of combinations, we can write
(n+2)!3!(n+23)!+(n+1)!3!(n+13)!=n(n+k)(pn+m)h\dfrac{\left( n+2 \right)!}{3!\left( n+2-3 \right)!}+\dfrac{\left( n+1 \right)!}{3!\left( n+1-3 \right)!}=\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}.
On simplification, we get
(n+2)!3!(n1)!+(n+1)!3!(n2)!=n(n+k)(pn+m)h\dfrac{\left( n+2 \right)!}{3!\left( n-1 \right)!}+\dfrac{\left( n+1 \right)!}{3!\left( n-2 \right)!}=\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}.
Hence, we can now write
(n+2)(n+1)n6+(n+1)n(n1)6=n(n+k)(pn+m)h\dfrac{\left( n+2 \right)\left( n+1 \right)n}{6}+\dfrac{\left( n+1 \right)n\left( n-1 \right)}{6}=\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}.
We can simplify this equation as
n(n+1)(2n+1)6=n(n+k)(pn+m)h\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}=\dfrac{n\left( n+k \right)\left( pn+m \right)}{h}
On comparing, we can write
k=1 m=1 p=2 h=6 \begin{aligned} & k=1 \\\ & m=1 \\\ & p=2 \\\ & h=6 \\\ \end{aligned}
Thus, k+m+p+h=1+1+2+6k+m+p+h=1+1+2+6.
Hence, the value of k+m+p+hk+m+p+h is 10.

Note: We must remember the property of combination, nCr+nCr+1=n+1Cr+1{}^{n}{{C}_{r}}+{}^{n}{{C}_{r+1}}={}^{n+1}{{C}_{r+1}} by heart, as it is very easy to make a mistake in writing this property. Also, we must not try to simplify the given equation by solving each combination separately, as this will make the equation much more complex.