Question
Question: The value of the expression \(\left( 1 + \frac { 1 } { \omega } \right)\) \(\left( 1 + \frac { 1 } ...
The value of the expression
(1+ω1) (1+ω21)+(2+ω1) (2+ω21)+
(3+ω1) (3+ω21)+…..+
Where w is an imaginary cube root of unity, is –
A
3n(n2+2)
B
3n(n2−2)
C
3n(n2+1)
D
None
Answer
3n(n2+2)
Explanation
Solution
Sol. Tk = = (k + w2) (k + w)
= k2 + k(w + w2) + w3 = k2 + k(–1) + 1 = k2 – k + 1.
\ Sum = T1 + T2 + ….. + Tn
= ∑k=1n(k2−k+1) = ∑k=1nk2 – ∑k=1nk+n
= 6n(n+1)(2n+1) – + n = 3n(n2+2)