Solveeit Logo

Question

Question: The value of the expression \(\left( 1 + \frac { 1 } { \omega } \right)\) \(\left( 1 + \frac { 1 } ...

The value of the expression

(1+1ω)\left( 1 + \frac { 1 } { \omega } \right) (1+1ω2)\left( 1 + \frac { 1 } { \omega ^ { 2 } } \right)+(2+1ω)\left( 2 + \frac { 1 } { \omega } \right) (2+1ω2)\left( 2 + \frac { 1 } { \omega ^ { 2 } } \right)+

(3+1ω)\left( 3 + \frac { 1 } { \omega } \right) (3+1ω2)\left( 3 + \frac { 1 } { \omega ^ { 2 } } \right)+…..+

Where w is an imaginary cube root of unity, is –

A

n(n2+2)3\frac { \mathrm { n } \left( \mathrm { n } ^ { 2 } + 2 \right) } { 3 }

B

n(n22)3\frac { \mathrm { n } \left( \mathrm { n } ^ { 2 } - 2 \right) } { 3 }

C

n(n2+1)3\frac { \mathrm { n } \left( \mathrm { n } ^ { 2 } + 1 \right) } { 3 }

D

None

Answer

n(n2+2)3\frac { \mathrm { n } \left( \mathrm { n } ^ { 2 } + 2 \right) } { 3 }

Explanation

Solution

Sol. Tk = = (k + w2) (k + w)

= k2 + k(w + w2) + w3 = k2 + k(–1) + 1 = k2 – k + 1.

\ Sum = T1 + T2 + ….. + Tn

= k=1n(k2k+1)\sum _ { k = 1 } ^ { n } \left( k ^ { 2 } - k + 1 \right) = k=1nk2\sum _ { k = 1 } ^ { \mathrm { n } } \mathrm { k } ^ { 2 }k=1nk+n\sum _ { \mathrm { k } = 1 } ^ { \mathrm { n } } \mathrm { k } + \mathrm { n }

= n(n+1)(2n+1)6\frac { \mathrm { n } ( \mathrm { n } + 1 ) ( 2 \mathrm { n } + 1 ) } { 6 } + n = n(n2+2)3\frac { \mathrm { n } \left( \mathrm { n } ^ { 2 } + 2 \right) } { 3 }