Solveeit Logo

Question

Question: The value of the expression \(\dfrac{\tan A}{1+\sec A}+\dfrac{1+\sec A}{\tan A}\) is equal to: 1) ...

The value of the expression tanA1+secA+1+secAtanA\dfrac{\tan A}{1+\sec A}+\dfrac{1+\sec A}{\tan A} is equal to:

  1. 2sinA2\sin A
  2. 2cosA2\cos A
  3. 2cscA2\csc A
  4. 2secA2\sec A
Explanation

Solution

Here in this question we have been asked to solve the given expression tanA1+secA+1+secAtanA\dfrac{\tan A}{1+\sec A}+\dfrac{1+\sec A}{\tan A} . For answering this question we will use the following values tanA=sinAcosA\tan A=\dfrac{\sin A}{\cos A} and secA=1cosA\sec A=\dfrac{1}{\cos A} and simplify the given expression.

Complete step by step answer:
Now considering from the question we have been asked to solve the given expression tanA1+secA+1+secAtanA\dfrac{\tan A}{1+\sec A}+\dfrac{1+\sec A}{\tan A} .
From the basic concepts of trigonometry we know that tanA=sinAcosA\tan A=\dfrac{\sin A}{\cos A} and secA=1cosA\sec A=\dfrac{1}{\cos A} .
By using the above identities in the given expression we will have sinAcosA1+1cosA+1+1cosAsinAcosA\Rightarrow \dfrac{\dfrac{\sin A}{\cos A}}{1+\dfrac{1}{\cos A}}+\dfrac{1+\dfrac{1}{\cos A}}{\dfrac{\sin A}{\cos A}} .
Now by further simplifying the given expression we will have
sinAcosA1+cosAcosA+1+cosAcosAsinAcosA sinA1+cosA+1+cosAsinA sin2A+(1+cosA)2sinA(1+cosA) \begin{aligned} & \Rightarrow \dfrac{\dfrac{\sin A}{\cos A}}{\dfrac{1+\cos A}{\cos A}}+\dfrac{\dfrac{1+\cos A}{\cos A}}{\dfrac{\sin A}{\cos A}} \\\ & \Rightarrow \dfrac{\sin A}{1+\cos A}+\dfrac{1+\cos A}{\sin A} \\\ & \Rightarrow \dfrac{{{\sin }^{2}}A+{{\left( 1+\cos A \right)}^{2}}}{\sin A\left( 1+\cos A \right)} \\\ \end{aligned} .
From the basic concepts of algebra we know that the valid identity of expansion is given as (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab .
Now by further expanding the given expression using the above identity we will havesin2A+1+cos2A+2cosAsinA(1+cosA)\Rightarrow \dfrac{{{\sin }^{2}}A+1+{{\cos }^{2}}A+2\cos A}{\sin A\left( 1+\cos A \right)} .
From the basic concepts of trigonometry we know that the valid trigonometry identity is given as sin2A+cos2A=1{{\sin }^{2}}A+{{\cos }^{2}}A=1 .
Now we further simplify the given expression using the above trigonometry identity we will have 2+2cosAsinA(1+cosA)\Rightarrow \dfrac{2+2\cos A}{\sin A\left( 1+\cos A \right)} .
Now by simplifying this expression we will have 2sinA\Rightarrow \dfrac{2}{\sin A} .
From the basic concepts of trigonometry we know that cscA=1sinA\csc A=\dfrac{1}{\sin A} .
Hence we can conclude that the value of the given expression is 2cscA2\csc A .

So, the correct answer is “Option 3”.

Note: During the process of answering questions of this type we should be sure with the concepts that we are going to apply in between the steps in order to simplify the given expression. We can also verify the expression tanA1+secA+1+secAtanA=2cscA\dfrac{\tan A}{1+\sec A}+\dfrac{1+\sec A}{\tan A}=2\csc A by substituting a fixed value for AA . Let us take A=30A={{30}^{\circ }} then we will have
tan301+sec30+1+sec30tan30 131+23+1+2313 13+2+3+21 8+433+2 4=2(2) \begin{aligned} & \Rightarrow \dfrac{\tan {{30}^{\circ }}}{1+\sec {{30}^{\circ }}}+\dfrac{1+\sec {{30}^{\circ }}}{\tan {{30}^{\circ }}} \\\ & \Rightarrow \dfrac{\dfrac{1}{\sqrt{3}}}{1+\dfrac{2}{\sqrt{3}}}+\dfrac{1+\dfrac{2}{\sqrt{3}}}{\dfrac{1}{\sqrt{3}}} \\\ & \Rightarrow \dfrac{1}{\sqrt{3}+2}+\dfrac{\sqrt{3}+2}{1} \\\ & \Rightarrow \dfrac{8+4\sqrt{3}}{\sqrt{3}+2} \\\ & \Rightarrow 4=2\left( 2 \right) \\\ \end{aligned} .
Now we can say that our evaluated expression is correct because csc30=2\csc {{30}^{\circ }}=2 .