Solveeit Logo

Question

Question: The value of the expression \(\dfrac{{1 - 4\sin {{10}^0}\sin {{70}^0}}}{{2\sin {{10}^0}}}\) is (A...

The value of the expression 14sin100sin7002sin100\dfrac{{1 - 4\sin {{10}^0}\sin {{70}^0}}}{{2\sin {{10}^0}}} is
(A)12\dfrac{1}{2}
(B)1
(C) 2
(D) None of these

Explanation

Solution

Hint- To solve this question we will use trigonometric identities such as sin(90θ)=cosθ and cosA - cosB = 2sin(A+B2)sin(AB2)\sin (90 - \theta ) = \cos \theta {\text{ and cosA - cosB = 2sin(}}\dfrac{{A + B}}{2})\sin (\dfrac{{A - B}}{2})

Complete step-by-step solution -
Given expression is 14sin100sin7002sin100............................(1)\dfrac{{1 - 4\sin {{10}^0}\sin {{70}^0}}}{{2\sin {{10}^0}}}............................(1)
As we know that
sin(90θ)=cosθ  cosA - cosB = 2sin(A+B2)sin(AB2)  \sin (90 - \theta ) = \cos \theta {\text{ }} \\\ {\text{cosA - cosB = 2sin(}}\dfrac{{A + B}}{2})\sin (\dfrac{{A - B}}{2}) \\\
From equation (1) write the angles of sin as a sum or difference of two angles such as 700=600+8002 and 100=8006002{70^0} = \dfrac{{{{60}^0} + {{80}^0}}}{2}{\text{ and 1}}{{\text{0}}^0} = \dfrac{{{{80}^0} - {{60}^0}}}{2} , we get
=14sin(600+8002 )sin(8006002)2sin(900100)= \dfrac{{1 - 4\sin \left( {\dfrac{{{{60}^0} + {{80}^0}}}{2}{\text{ }}} \right)\sin \left( {\dfrac{{{{80}^0} - {{60}^0}}}{2}} \right)}}{{2\sin ({{90}^0} - {{10}^0})}}
Now, using the formulas mentioned above, we get
=12[cos(600)cos(800)]2cos(800)= \dfrac{{1 - 2[\cos \left( {{\text{6}}{{\text{0}}^0}} \right) - \cos \left( {{{80}^0}} \right)]}}{{2\cos ({{80}^0})}}
As we know that cos600=12\cos {60^0} = \dfrac{1}{2} substituting this value in the above equation, we get
=12×12+2cos(800)2cos(800) =11+2cos(800)2cos(800) =2cos(800)2cos(800) =1  = \dfrac{{1 - 2 \times \dfrac{1}{2} + 2\cos \left( {{{80}^0}} \right)}}{{2\cos ({{80}^0})}} \\\ = \dfrac{{1 - 1 + 2\cos \left( {{{80}^0}} \right)}}{{2\cos ({{80}^0})}} \\\ = \dfrac{{2\cos \left( {{{80}^0}} \right)}}{{2\cos ({{80}^0})}} \\\ = 1 \\\
So, the value of the given expression is 1.
Hence, the correct answer is option B.

Note- To solve this question, we used the trigonometric identities and some manipulation. Whenever we have an unknown or random angle in the problem, whose trigonometric values are unknown, try to manipulate some angle by using trigonometric identities in order to cancel that term or to bring the angle in some known value. Remember the trigonometric identities.