Solveeit Logo

Question

Question: The value of the expression \({{\cos }^{2}}\dfrac{\pi }{12}+{{\cos }^{2}}\dfrac{\pi }{4}+{{\cos }^{2...

The value of the expression cos2π12+cos2π4+cos25π12{{\cos }^{2}}\dfrac{\pi }{12}+{{\cos }^{2}}\dfrac{\pi }{4}+{{\cos }^{2}}\dfrac{5\pi }{12} is
(a) 23\dfrac{2}{3}
(b) 23+3\dfrac{2}{3+\sqrt{3}}
(c) 32\dfrac{3}{2}
(d) 3+32\dfrac{3+\sqrt{3}}{2}

Explanation

Solution

In the trigonometric expression given to us, we know the value of cosπ4\cos \dfrac{\pi }{4} which is equal to 12\dfrac{1}{\sqrt{2}}. For simplifying the reset of the two terms, we can add their arguments to find a relation between the two. The relation will be obtained as π12=π25π12\dfrac{\pi }{12}=\dfrac{\pi }{2}-\dfrac{5\pi }{12}, on substituting which into the given expression, and using the trigonometric identity given by sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1, we will be able to find the final value of the given expression.

Complete step by step solution:
Let us consider the trigonometric expression given in the above question as
E=cos2π12+cos2π4+cos25π12\Rightarrow E={{\cos }^{2}}\dfrac{\pi }{12}+{{\cos }^{2}}\dfrac{\pi }{4}+{{\cos }^{2}}\dfrac{5\pi }{12}
We know that
cosπ4=12\Rightarrow \cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}
Taking squares on both the sides, we get
cos2π4=(12)2 cos2π4=12 \begin{aligned} & \Rightarrow {{\cos }^{2}}\dfrac{\pi }{4}={{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}} \\\ & \Rightarrow {{\cos }^{2}}\dfrac{\pi }{4}=\dfrac{1}{2} \\\ \end{aligned}
Putting the above equation in the given expression, we get

& \Rightarrow E={{\cos }^{2}}\dfrac{\pi }{12}+\dfrac{1}{2}+{{\cos }^{2}}\dfrac{5\pi }{12} \\\ & \Rightarrow E=\dfrac{1}{2}+{{\cos }^{2}}\dfrac{\pi }{12}+{{\cos }^{2}}\dfrac{5\pi }{12}......\left( i \right) \\\ \end{aligned}$$ Now, let us add the two arguments of the cosine terms to get $$\begin{aligned} & \Rightarrow \dfrac{\pi }{12}+\dfrac{5\pi }{12} \\\ & \Rightarrow \dfrac{6\pi }{12} \\\ & \Rightarrow \dfrac{\pi }{2} \\\ \end{aligned}$$ This means we can write $\Rightarrow \dfrac{\pi }{12}+\dfrac{5\pi }{12}=\dfrac{\pi }{2}$ Subtracting $\dfrac{5\pi }{12}$ from both the sides, we get $$\begin{aligned} & \Rightarrow \dfrac{\pi }{12}+\dfrac{5\pi }{12}-\dfrac{5\pi }{12}=\dfrac{\pi }{2}-\dfrac{5\pi }{12} \\\ & \Rightarrow \dfrac{\pi }{12}=\dfrac{\pi }{2}-\dfrac{5\pi }{12} \\\ \end{aligned}$$ Now, on substituting the above relation in (i) we get $$\begin{aligned} & \Rightarrow E=\dfrac{1}{2}+{{\cos }^{2}}\left( \dfrac{\pi }{2}-\dfrac{5\pi }{12} \right)+{{\cos }^{2}}\dfrac{5\pi }{12} \\\ & \Rightarrow E=\dfrac{1}{2}+{{\left[ \cos \left( \dfrac{\pi }{2}-\dfrac{5\pi }{12} \right) \right]}^{2}}+{{\cos }^{2}}\dfrac{5\pi }{12}........\left( ii \right) \\\ \end{aligned}$$ Now, we know that $$\Rightarrow \cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta $$ Substituting $$\theta =\dfrac{5\pi }{12}$$ in the above identity, we get $$\Rightarrow \cos \left( \dfrac{\pi }{2}-\dfrac{5\pi }{12} \right)=\sin \dfrac{5\pi }{12}$$ Putting the above identity in (ii) we get $$\begin{aligned} & \Rightarrow E=\dfrac{1}{2}+{{\left[ \sin \dfrac{5\pi }{12} \right]}^{2}}+{{\cos }^{2}}\dfrac{5\pi }{12} \\\ & \Rightarrow E=\dfrac{1}{2}+{{\sin }^{2}}\dfrac{5\pi }{12}+{{\cos }^{2}}\dfrac{5\pi }{12} \\\ \end{aligned}$$ Now, using the trigonometric identity given by ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$, we can write the above expression as $$\begin{aligned} & \Rightarrow E=\dfrac{1}{2}+1 \\\ & \Rightarrow E=\dfrac{3}{2} \\\ \end{aligned}$$ Thus, the value of the given trigonometric expression is found to be equal to $$\dfrac{3}{2}$$. **Hence, the correct answer is option (c).** **Note:** We must remember all the important trigonometric identities for solving these types of questions. We can also use the trigonometric identity ${{\cos }^{2}}\theta =\dfrac{1+\cos 2\theta }{2}$ on all the three terms to simplify the given expression as $$\dfrac{1}{2}\left[ \left( 1+\cos \dfrac{\pi }{6} \right)+\left( 1+\cos \dfrac{\pi }{2} \right)+\left( 1+\cos \dfrac{5\pi }{6} \right) \right]$$. Then, on substituting $\cos \left( \dfrac{\pi }{6} \right)=\dfrac{\sqrt{3}}{2}$, $$\cos \left( \dfrac{5\pi }{6} \right)=\dfrac{-\sqrt{3}}{2}$$, and $$\cos \left( \dfrac{\pi }{2} \right)=0$$, we will obtain the required value.