Solveeit Logo

Question

Question: The value of the expression \({{\cos }^{2}}10{}^\circ -\cos 10{}^\circ \cos 50{}^\circ +{{\cos }^{2}...

The value of the expression cos210cos10cos50+cos250{{\cos }^{2}}10{}^\circ -\cos 10{}^\circ \cos 50{}^\circ +{{\cos }^{2}}50{}^\circ is
[a] 32(1+cos20)\dfrac{3}{2}\left( 1+\cos 20{}^\circ \right)
[b] 34\dfrac{3}{4}
[c] 34+cos20\dfrac{3}{4}+\cos 20{}^\circ
[d] 32\dfrac{3}{2}

Explanation

Solution

Take cos 10 common from the first two terms and use the fact that cos2Asin2B=cos(A+B)cos(AB){{\cos }^{2}}A-{{\sin }^{2}}B=\cos \left( A+B \right)\cos \left( A-B \right) and hence prove that the given expression is equal to 1+cos402cos10cos501+\dfrac{\cos 40{}^\circ }{2}-\cos 10{}^\circ \cos 50{}^\circ . Use the fact that 2cosAcosB=cos(A+B)+cos(AB)2\cos A\cos B=\cos \left( A+B \right)+\cos \left( A-B \right) and hence prove that the given expression is equal to 1+cos402cos602cos4021+\dfrac{\cos 40{}^\circ }{2}-\dfrac{\cos 60{}^\circ }{2}-\dfrac{\cos 40{}^\circ }{2}. Hence find which of the options are correct.

Complete step-by-step solution:
Let l=cos210cos10cos50+cos250l={{\cos }^{2}}10{}^\circ -\cos 10{}^\circ \cos 50{}^\circ +{{\cos }^{2}}50{}^\circ
We know that cos2x=1sin2x{{\cos }^{2}}x=1-{{\sin }^{2}}x
Hence, we have
l=cos210cos10cos50+1sin250l={{\cos }^{2}}10{}^\circ -\cos 10{}^\circ \cos 50{}^\circ +1-{{\sin }^{2}}50{}^\circ
We know that cos2Asin2B=cos(A+B)cos(AB){{\cos }^{2}}A-{{\sin }^{2}}B=\cos \left( A+B \right)\cos \left( A-B \right)
Put A=10A=10{}^\circ and B=50B=50{}^\circ , we get
cos210sin250=cos(10+50)cos(1050)=cos60cos40{{\cos }^{2}}10{}^\circ -{{\sin }^{2}}50{}^\circ =\cos \left( 10{}^\circ +50{}^\circ \right)\cos \left( 10{}^\circ -50{}^\circ \right)=\cos 60{}^\circ \cos 40{}^\circ
We know that cos60=12\cos 60{}^\circ =\dfrac{1}{2}. Hence, we have
cos210sin250=cos402{{\cos }^{2}}10{}^\circ -{{\sin }^{2}}50{}^\circ =\dfrac{\cos 40{}^\circ }{2}
Hence, we have
l=cos402cos10cos50l=\dfrac{\cos 40{}^\circ }{2}-\cos 10{}^\circ \cos 50{}^\circ
We know that 2cosAcosB=cos(A+B)+cos(AB)2\cos A\cos B=\cos \left( A+B\right)+\cos \left(A-B \right)
Put A=10A=10{}^\circ and B=50B=50{}^\circ , we get
2cos10cos50=cos(10+50)+cos(1050) =cos60+cos40 \begin{aligned} & 2\cos 10{}^\circ \cos 50{}^\circ =\cos \left({10{}^\circ +50{}^\circ } \right)+\cos \left({10{}^\circ -50{}^\circ }\right) \\\ & =\cos 60{}^\circ +\cos 40{}^\circ \\\ \end{aligned}
We know that cos60=12\cos 60{}^\circ =\dfrac{1}{2}. Hence, we have
2cos10cos50=12+cos402\cos 10{}^\circ \cos 50{}^\circ =\dfrac{1}{2}+\cos 40{}^\circ
Dividing both sides by 2, we get
cos10cos50=14+cos402\cos 10{}^\circ \cos 50{}^\circ =\dfrac{1}{4}+\dfrac{\cos 40{}^\circ }{2}
Hence, we have
l=1+cos40214cos402=34l=1+\dfrac{\cos 40{}^\circ }{2}-\dfrac{1}{4}-\dfrac{\cos 40{}^\circ }{2}=\dfrac{3}{4}
Hence, we have
cos210cos10cos50+1sin250=34{{\cos }^{2}}10{}^\circ -\cos 10{}^\circ \cos 50{}^\circ +1-{{\sin }^{2}}50{}^\circ =\dfrac{3}{4}
Hence option [b] is correct.

Note:[1] In these types of questions, we should try all the possible ways to simplify the expression. If by one method, does not simplify the problem or gets stuck we should another way to simplify the expression. Usually after at most three trials the problem gets simplified.
[2] One can use the identity cos2x=1+cos2x2{{\cos }^{2}}x=\dfrac{1+\cos 2x}{2} followed by cosA+cosB=2cosA+B2cosAB2\cos A+\cos B=2\cos \dfrac{A+B}{2}\cos \dfrac{A-B}{2} instead of cos2Asin2B=cos(A+B)cos(AB){{\cos }^{2}}A-{{\sin }^{2}}B=\cos \left( A+B \right)\cos \left( A-B \right) to simplify the expression.