Solveeit Logo

Question

Question: The value of the expression \[\cos {1^ \circ }.\cos {2^ \circ }.\cos {3^ \circ }........\cos {179^ \...

The value of the expression cos1.cos2.cos3........cos179=\cos {1^ \circ }.\cos {2^ \circ }.\cos {3^ \circ }........\cos {179^ \circ } =
a) 1 - 1
b) 00
c) 12\dfrac{1}{{\sqrt 2 }}
d) 11

Explanation

Solution

Hint : We need to find the value of the expression cos1.cos2.cos3........cos179\cos {1^ \circ }.\cos {2^ \circ }.\cos {3^ \circ }........\cos {179^ \circ }. We only know the trigonometric value of some basic measure of angles and so we cannot just find the value of each term and multiply. We simply know that cos90=0\cos {90^ \circ } = 0and cos1.cos2.cos3........cos179\cos {1^ \circ }.\cos {2^ \circ }.\cos {3^ \circ }........\cos {179^ \circ } include cos90\cos {90^ \circ } in between. 00 multiplied with any number or any number of terms gives 00. So, we will find our answer using these properties

** Complete step-by-step answer** :
We need to find the value of cos1.cos2.cos3........cos179\cos {1^ \circ }.\cos {2^ \circ }.\cos {3^ \circ }........\cos {179^ \circ }.
cos1.cos2.cos3........cos179=cos1×cos2×cos3×........×cos179\cos {1^ \circ }.\cos {2^ \circ }.\cos {3^ \circ }........\cos {179^ \circ } = \cos {1^ \circ } \times \cos {2^ \circ } \times \cos {3^ \circ } \times ........ \times \cos {179^ \circ }
As the angle measures are forward counting numbers, it includes cos90\cos {90^ \circ } in between. So,
cos1.cos2.cos3........cos179=cos1×cos2×cos3×........×cos179\cos {1^ \circ }.\cos {2^ \circ }.\cos {3^ \circ }........\cos {179^ \circ } = \cos {1^ \circ } \times \cos {2^ \circ } \times \cos {3^ \circ } \times ........ \times \cos {179^ \circ }
=cos1×cos2×cos3×....×cos90×....×cos179= \cos {1^ \circ } \times \cos {2^ \circ } \times \cos {3^ \circ } \times .... \times \cos {90^ \circ } \times .... \times \cos {179^ \circ }
We know the value of cos90=0\cos {90^ \circ } = 0. Hence, putting the value of cos90\cos {90^ \circ }, we get
cos1.cos2.cos3........cos179=cos1×cos2×cos3×........×cos179\cos {1^ \circ }.\cos {2^ \circ }.\cos {3^ \circ }........\cos {179^ \circ } = \cos {1^ \circ } \times \cos {2^ \circ } \times \cos {3^ \circ } \times ........ \times \cos {179^ \circ }
=cos1×cos2×cos3×....×cos90×....×cos179= \cos {1^ \circ } \times \cos {2^ \circ } \times \cos {3^ \circ } \times .... \times \cos {90^ \circ } \times .... \times \cos {179^ \circ }
=cos1×cos2×cos3×....×0×....×cos179= \cos {1^ \circ } \times \cos {2^ \circ } \times \cos {3^ \circ } \times .... \times 0 \times .... \times \cos {179^ \circ }
Now, we know anything multiplied with 00 gives 00i.e. a×b×c×......×0×.....×n=0a \times b \times c \times ...... \times 0 \times ..... \times n = 0.
Hence,
=cos1×cos2×cos3×....×cos90×....×cos179= \cos {1^ \circ } \times \cos {2^ \circ } \times \cos {3^ \circ } \times .... \times \cos {90^ \circ } \times .... \times \cos {179^ \circ }
=cos1×cos2×cos3×....×0×....×cos179= \cos {1^ \circ } \times \cos {2^ \circ } \times \cos {3^ \circ } \times .... \times 0 \times .... \times \cos {179^ \circ }
=0= 0
So, we got
cos1.cos2.cos3........cos179=0\cos {1^ \circ }.\cos {2^ \circ }.\cos {3^ \circ }........\cos {179^ \circ } = 0
So, the correct answer is “Option b”.

Note : In such types of questions, we usually first think of using some trigonometric identity to solve. Also, we need to observe the pattern of angle measures very carefully as many of the times it follows some pattern like here it was simple forward counting it could have been odd numbers or even numbers or anything else. And, we forget or mix up the values of trigonometric functions for the basic angles which we need to learn and revise otherwise we won't be able to think of such tricks and solve the questions easily.