Solveeit Logo

Question

Mathematics Question on permutations and combinations

The value of the expression 47C4+j=15,52jC3^{47}C_4+ \displaystyle \sum^5_{j = 1} , ^{52-j}C_3 is

A

47C5^{47}C_5

B

52C5^{52}C_5

C

52C4^{52}C_4

D

None of these

Answer

52C4^{52}C_4

Explanation

Solution

The correct answer is C:52C4^{52}C_4
Given expression;
47C4+j=15,52jC3^{47}C_4+ \displaystyle \sum^5_{j = 1} , ^{52-j}C_3
=47C4+51C3+50C3+49C3+48C3+47C3= ^{47}C_4+ ^{51}C_3 + ^{50}C_3 + ^{49}C_3+ ^{48}C_3 + ^{47}C_3
=(47C4+47C3)+48C3+49C3+50C3+51C3= ( ^{47}C_4+ ^{47}C_3 )+ ^{48}C_3 + ^{49}C_3+ ^{50}C_3 + ^{51}C_3
20mm[usingnCr+nCr1=n+1Cr]20mm [using ^nC_r + ^nC_{r-1} = ^{n+1}C_r]
=(48C4+48C3)+49C3+50C3+51C3= ( ^{48}C_4+ ^{48}C_3 )+ ^{49}C_3 + ^{50}C_3 + ^{51}C_3
=(49C4+49C3)+50C3+51C3= ( ^{49}C_4+ ^{49}C_3 )+ ^{50}C_3 + ^{51}C_3
=(50C4+50C3)+51C3= ( ^{50}C_4+ ^{50}C_3 )+ ^{51}C_3
=51C4+51C3=52C4= ^{51}C_4+ ^{51}C_3 = ^{52}C_4
combination
combination