Solveeit Logo

Question

Question: The value of the expression \[1.\left( 2-\omega \right) \left( 2-\omega^{2} \right) +2.\left( 3-\ome...

The value of the expression 1.(2ω)(2ω2)+2.(3ω)(3ω2)++(n1)(nω)(nω2)1.\left( 2-\omega \right) \left( 2-\omega^{2} \right) +2.\left( 3-\omega \right) \left( 3-\omega^{2} \right) +\cdots +\left( n-1\right) \left( n-\omega \right) \left( n-\omega^{2} \right) , where ω\omega is an imaginary cube root of unity, is
A) 12(n1)n(n2+3n+4)\dfrac{1}{2} \left( n-1\right) n\left( n^{2}+3n+4\right)
B) 14(n1)n(n2+3n+4)\dfrac{1}{4} \left( n-1\right) n\left( n^{2}+3n+4\right)
C) 12(n+1)n(n2+3n+4)\dfrac{1}{2} \left( n+1\right) n\left( n^{2}+3n+4\right)
D) 14(n+1)n(n2+3n+4)\dfrac{1}{4} \left( n+1\right) n\left( n^{2}+3n+4\right)

Explanation

Solution

Hint: In this question it is given that we have to find the value of the expansion 1.(2ω)(2ω2)+2.(3ω)(3ω2)++(n1)(nω)(nω2)1.\left( 2-\omega \right) \left( 2-\omega^{2} \right) +2.\left( 3-\omega \right) \left( 3-\omega^{2} \right) +\cdots +\left( n-1\right) \left( n-\omega \right) \left( n-\omega^{2} \right) . So to find the solution we have to use the properties of ω\omega, as we know that ω\omega is the imaginary cube root of 1, then we can write,
ω3=1\omega^{3} =1................(1)
& ω+ω2=1\omega +\omega^{2} =-1………(2)

Complete step-by-step solution:
The given expression can be written as,
S=1.(2ω)(2ω2)+2.(3ω)(3ω2)++(n1)(nω)(nω2)1.\left( 2-\omega \right) \left( 2-\omega^{2} \right) +2.\left( 3-\omega \right) \left( 3-\omega^{2} \right) +\cdots +\left( n-1\right) \left( n-\omega \right) \left( n-\omega^{2} \right)
=(21)(2ω)(2ω2)+(31)(3ω)(3ω2)++(n1)(nω)(nω2)\left( 2-1\right) \left( 2-\omega \right) \left( 2-\omega^{2} \right) +\left( 3-1\right) \left( 3-\omega \right) \left( 3-\omega^{2} \right) +\cdots +\left( n-1\right) \left( n-\omega \right) \left( n-\omega^{2} \right)
=k=2n(k1)(kω)(kω2)\displaystyle \sum^{n}_{k=2} \left( k-1\right) \left( k-\omega \right) \left( k-\omega^{2} \right) ......(3)[ applying the summation from k=2 to n]
=k=2n(k1)(k2kωkω2+ω3)\displaystyle \sum^{n}_{k=2} \left( k-1\right) \left( k^{2}-k\omega -k\omega^{2} +\omega^{3} \right)
=\displaystyle \sum^{n}_{k=2} \left( k-1\right) \left\\{ k^{2}-k\left( \omega +\omega^{2} \right) +\omega^{3} \right\\}
=\displaystyle \sum^{n}_{k=2} \left( k-1\right) \left\\{ k^{2}-k\left( -1\right) +1\right\\} [ by using (1) and (2)]
=\displaystyle \sum^{n}_{k=2} \left( k-1\right) \left\\{ k^{2}+k+1\right\\}
=k=2n(k31)\displaystyle \sum^{n}_{k=2} \left( k^{3}-1\right) [ (ab)(a2+ab+b2)=a3b3\because \left( a-b\right) \left( a^{2}+ab+b^{2}\right) =a^{3}-b^{3}]
Now by expanding the summation we get,
S=(231)+(331)++(n31)\left( 2^{3}-1\right) +\left( 3^{3}-1\right) +\cdots +\left( n^{3}-1\right)
=(23+33++n3)+(n1)\left( 2^{3}+3^{3}+\cdots +n^{3}\right) +\left( n-1\right) [ since, in the 2nd2^{nd} part (n-1) times 1 are there]
=(1+23+33++n3)+n\left( 1+2^{3}+3^{3}+\cdots +n^{3}\right) +n
As we know that, the summation of the cube of first ‘n’ positive integer is \left\\{ \dfrac{n\left( n+1\right) }{2} \right\\}^{2} .
So by this we can write,
S=\left\\{ \dfrac{n\left( n+1\right) }{2} \right\\}^{2} +n
=n2(n2+2n+1)4+n\dfrac{n^{2}\left( n^{2}+2n+1\right) }{4} +n
=\dfrac{n}{4} \left\\{ n\left( n^{2}+2n+1\right) +4\right\\} [taking n4\dfrac{n}{4} common]
=n4(n3+2n2+n+4)\dfrac{n}{4} \left( n^{3}+2n^{2}+n+4\right)
Now solving the cubic equation by factorising, we get,
S=n4(n3n2+3n23n+4n+4)\dfrac{n}{4} \left( n^{3}-n^{2}+3n^{2}-3n+4n+4\right)
Now we are going to take common n2n^{2} from 1st1^{st} and 2nd2^{nd} term, 3n from 3rd3^{rd} and 4th4^{th} term, 4 from 5th5^{th} and 6th6^{th} term.
Therefore, we get,
S=\dfrac{n}{4} \left\\{ n^{2}\left( n-1\right) +3n\left( n-1\right) +4\left( n-1\right) \right\\}
=n4(n1)(n2+3n+4)\dfrac{n}{4} \left( n-1\right) \left( n^{2}+3n+4\right) [ by taking (n - 1) common]
=14(n1)n(n2+3n+4)\dfrac{1}{4} \left( n-1\right) n\left( n^{2}+3n+4\right)
Hence the correct option is option B.

Note: While solving any series try to write it using the summation which we have used in step (3), this will shorten the calculation process. Also while writing any series as summation you have to keep in mind that each and every term of the series following a certain structure or else what you can do , you can find its nthn^{th} term i.e, tn=(n1)(nω)(nω2)t_{n}=\left( n-1\right) \left( n-\omega \right) \left( n-\omega^{2} \right) and then use summation notation replacing n by k and writing it as k=2n(k1)(kω)(kω2)\displaystyle \sum^{n}_{k=2} \left( k-1\right) \left( k-\omega \right) \left( k-\omega^{2} \right) .