Solveeit Logo

Question

Question: The value of the expression \(1 - \frac{\sin^{2}y}{1 + \cos y} + \frac{1 + \cos y}{\sin y} - \frac{...

The value of the expression

1sin2y1+cosy+1+cosysinysiny1cosy1 - \frac{\sin^{2}y}{1 + \cos y} + \frac{1 + \cos y}{\sin y} - \frac{\sin y}{1 - \cos y} is equal to

A

0

B

1

C

siny\sin y

D

cosy\cos y

Answer

cosy\cos y

Explanation

Solution

The expression can be written as

1+cosysin2y1+cosy+(1cos2y)sin2ysiny(1cosy)\frac{1 + \cos y - \sin^{2}y}{1 + \cos y} + \frac{(1 - \cos^{2}y) - \sin^{2}y}{\sin y(1 - \cos y)}

=cosy(1+cosy)1+cosy+0=cosy.= \frac{\cos y(1 + \cos y)}{1 + \cos y} + 0 = \cos y.