Question
Question: The value of the expression \(1 - \frac{n}{1}.\frac{(1 + x)}{1 + nx} + \frac{n(n - 1)}{1.2}\frac{(1...
The value of the expression
1−1n.1+nx(1+x)+1.2n(n−1)(1+nx)2(1+2x)−1.2.3n(n−1)(n−2)(1+nx)3(1+3x)+........is
A
2
B
1
C
3
D
0
Answer
0
Explanation
Solution
The expression can be divided into two parts as
(1−1n(1+nx)1+2n(n−1)(1+nx)21−1⋅2⋅3(1+nx)3n(n−1)(n−2)+⋯)+ (1+nx−nx+(1+nx)2n(n−1)x−1.2n(n−1)(n−2)(1+nx)3x+⋯)
= (1−1+nx1)n−1+nxnx(1−1(1+nx)(n−1)+1.2(1+nx)2(n−1)(n−2)+⋯)
= (1+nxnx)n−1+nxnx(1−1+nx1)n−1
= (1+nxnx)n−(1+nxnx)(1+nxnx)n−1
= 0